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a b s t r a c t

We use a linear diffusion process to approximate a stochastic density regulated population model where
parameters can change through time. Contrary to stationary models, there is a difference between the
expected value and the carrying capacity of a population at any given time. This time delay can be
considerable and depends on the vital rates of the population and the magnitude of the change. We
emphasize the importance of acknowledging this difference when assessing viability of populations. As
an illustration, we consider the population of Norwegian spring spawning herring and its collapse in
the 1960s. Based on our analysis, the stock was already at a critical level a decade before the collapse
was observed.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Population dynamics is most commonly analyzed by stationary
processes, assuming no catastrophic effects or continuous trends in
the environment. A major problem in population viability analysis
(PVA) is then the exploration of mean time to extinction [1], or der-
ivation of prediction intervals for the time to extinction [2]. These
analyzes are important in relation to the precautionary principle
[3], that is, how to avoid unacceptable small population sizes [4],
and estimating the probability of extinction [5].

However, human activities often affect populations in ways that
make the stationary assumption unrealistic. By introducing
dynamic parameters that change through time, discrete or contin-
uous changes in the environment, caused by human activities, can
be dealt with. Examples of sudden changes are construction of
dams for hydro-electrical power production, forest clearance for
roads or to acquire land for agriculture [6], and accidents such as
oil spills or the release of other pollutants. A recent paper by
Fukaya et al. [7] studies the effect of habitat fluctuations on the
population dynamics of a marine copepod. Such changes in habitat
can be modeled as temporal variation in the growth rate of a spe-
cies. Gradual changes may occur due to climate change, leading to
trends in e.g. temperature and climate indices such as the North
Atlantic Oscillation index [8], or changes in stochastic variability.
A study on climate effects on Eurasian oystercatcher by van de
Pol et al. [9] used a stage-structured model, and showed that the

time to extinction increased as the mean average temperature in-
creased, while an increase in the standard deviation of average
temperature reduced the time to extinction. Renwick et al. [10]
used generalized linear models to study changes in species abun-
dance under climate change, in addition to other explanatory vari-
ables such as land, habitat and rainfall. Under different scenarios
for increasing mean global temperature, they predicted an increase
in population size for Eurasian nuthatch and green woodpecker,
and a decrease in abundance for Eurasian curlew and meadow pi-
pit. Climate effects have also been studied for mammals, e.g. seal
[11], red deer [12] and soay sheep [13], and for fish species such
as the Atlantic cod [14].

Another anthropogenic effect is overexploitation which has dri-
ven many populations extinct, or close to extinction [15–20]. With
increasingly effective technology, harvesting has introduced dra-
matic effects on the population dynamics; effects that may be rep-
resented by temporal changes in the parameters describing their
dynamics. For instance, the collapse of the Norwegian spring
spawning herring population at the end of the 1960s was followed
by a period of about 30 years when the population could not be
harvested at all [15].

The dynamic response of a given species to changes in the envi-
ronment, for example caused by the above mentioned human
activities, depends in general on how the mean vital rates of sur-
vival and fecundity are affected. The dynamics of populations
change in different ways depending on which parameters or char-
acteristics of the species that respond to the environmental
changes, as well as the values of other parameters. Here, we study
such responses, analyzing in particular how changes in population
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dynamics are delayed depending on the biological parameters
being affected and the initial dynamics of the populations.

Stationary population fluctuations can often be described, with
sufficient accuracy, by three basic quantities; the carrying capacity
(usually defined as the population size with zero growth in the
average environment), the magnitude of the noise, and the mean
return time to equilibrium, which is closely related to the popula-
tion growth rate at small densities. The mean population size will
then be close, or practically equal, to the carrying capacity. Here,
we emphasize that analysis of populations in temporally changing
environments requires a clear distinction between these concepts.
The actual state of a population can now be expressed by two dif-
ferent quantities. The population size itself describes exactly the
present status. However, at a given time and environment, the
individuals will have some mean vital rates of survival and fecun-
dity, together with effects of density, that determine the expected
dynamics of the population, provided that there are no more envi-
ronmental changes. Under changing environments, there may be a
substantial difference between expected population size and carry-
ing capacity, depending in particular on the mean return time to
equilibrium. We will analyze this difference in detail, and give sim-
ple rules of thumb for how to assess its magnitude. We propose
that the precautionary principle should be implemented by analyz-
ing this difference as a major component of the PVA.

Our method will also demonstrate the difference between a pure
statistical approach and a population dynamic approach. For exam-
ple, a common statistical approach is to detrend a time series before
fitting an ARMA (p,q) model to the remaining stationary time series
[21]. Such approaches do not pay attention to the important dis-
tinction between the observed mean population size and the under-
lying carrying capacity with the implication that the precautionary
principle will not be considered with maximum efficiency.

This distinction will be analyzed by linearizing the rather general
theta-logistic process on the log scale and approximating it by a con-
tinuous time Ornstein–Uhlenbeck process [1]. For stationary mod-
els, such linearizations are known to give very accurate
descriptions. The simplicity of the Ornstein–Uhlenbeck process
makes it possible to model all three parameters; growth, return to
equilibrium (or strength of density dependence) and the variance,
as general functions of time. The modified process will be a Gaussian
process where log population sizes at any time follow a multivariate
normal distribution with simple analytical expressions for the
parameters. In particular, we derive simple expressions for the
changes in mean and variance of log population size. We apply this
model to study different types of deterministic environmental
changes in dynamic parameters, such as sudden changes and linear
trends, and we suggest simple methods for analyzing changes in car-
rying capacity as an important part of a PVA. Generally, the changes
in parameters may also be stochastic, sometimes called parameter
drift [22,23], but such changes are outside the scope of this paper.

We first present the purely analytical results for the linear pro-
cess. Next, we discuss how the parameters in the linear process re-
late to parameters in stochastic density regulated population
processes with environmental noise. Finally, we present some
examples on sudden and linear changes in biological parameters,
with special emphasis on time delays and the difference between
expected population size and carrying capacity.

2. Methods

2.1. Linear diffusion process

Consider the linear diffusion process for log population size Xt

at time t with infinitesimal mean aðtÞ � bðtÞXt and infinitesimal
variance r2ðtÞ [24],

dXt ¼ ½aðtÞ � bðtÞXt�dt þ rðtÞdBt ð1Þ

where Bt is standard Brownian motion with expectation zero and
unit variance [1] such that E½dBt� ¼ 0 and Var½dBt � ¼ dt. The diffu-
sion parameters a;b and r2, are general functions of time. Defining
!ðs; tÞ ¼ expð

R t
s bðvÞdvÞ for any 0 6 s 6 t, the solution to this linear

stochastic differential Eq. (1), derived in Appendix A, is

Xt ¼ !�1ð0; tÞ X0 þ
Z t

0
!ð0;uÞaðuÞduþ

Z t

0
!ð0;uÞrðuÞdBu

� �
;

where !�1ðs; tÞ ¼ expð�
R t

s bðvÞdvÞ. Assuming X0 � Nðl0; m0Þ, the log
population sizes at any set of times follow a multinormal distribu-
tion with expectation

E½Xt � ¼ !�1ð0; tÞ l0 þ
Z t

0
!ð0;uÞaðuÞdu

� �
ð2Þ

and covariances

:Cov½Xs;Xt � ¼ !�1ðs; tÞ!�2ð0; sÞ m0 þ
Z s

0
!2ð0;uÞr2ðuÞdu

� �
: ð3Þ

2.2. Mean and variance

Taking the expectation of Xtþdt ¼ Xt þ dXt and writing
lt ¼ E½Xt �, we get (see Appendix A.1)

dlt

dt
¼ aðtÞ � bðtÞlt : ð4Þ

The solution to this first order differential equation is Eq. (2). More-
over, for bðtÞ > 0 and kt ¼ aðtÞ=bðtÞ, Eq. (4) gives the difference be-
tween expected log population size and the carrying capacity on the
log scale

kt ¼ lt þ
1

bðtÞ
dlt

dt
: ð5Þ

We see that kt ¼ lt when dlt=dt ¼ 0, while the carrying capacity on
the log scale is smaller than expected log population size for
decreasing expectations. The difference is large for small values of
bðtÞ, corresponding to large mean return times to equilibrium.

Similarly, for the variance mt ¼ Var½Xt � we get the first order dif-
ferential equation

dmt

dt
¼ �2bðtÞmt þ r2ðtÞ ð6Þ

with solution given by Eq. (3) (for s ¼ t). Again, for bðtÞ > 0 for any t,
Eq. (6) can be written as

s2
t ¼

r2ðtÞ
2bðtÞ ¼ mt þ

1
2bðtÞ

dmt

dt
ð7Þ

where s2
t is the stationary variance of Xt under constant vital rates,

determined by the environmental conditions at time t.
The process with constant parameters is the well known Orn-

stein–Uhlenbeck process [1]. With initial value X0;Xt then has a
normal distribution with expectation

E½Xt � ¼
a
b
þ X0 �

a
b

� �
e�bt

and variance

Var½Xt � ¼
r2

2b
1� e�2bt
� �

;

which are special cases of Eqs. (2) and (3). Thus, in the limit as
t !1, the process has a normal stationary distribution with mean
a=b and variance r2=ð2bÞ [1]. If the parameters are functions of time
for t 6 t0, but kept constant after t0, then the process is the above
Ornstein–Uhlenbeck process for t > t0.
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