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a b s t r a c t

We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution
Wright–Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K ×K mutation
rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K − 1)-
dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on
the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the
simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of
a set of line densities along the edges of the simplex. The method of solution relies on parameterising the
general non-reversible ratematrix as the sumof a reversible part and a set of (K−1)(K−2)/2 independent
terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution
is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele
frequency spectra.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The rapidly reducing cost of high throughput sequencing now
allows for the acquisition of genome-wide data for detecting
nucleotide allele frequencies extracted from multiple alignments
within a population across large numbers of genomic sites (Pool
et al., 2010). The existence of such data raises the possibility
of estimating not only specific mutation rates, but complete
evolutionary ratematrices from the current observed state of allele
frequencies with the genome.

In a recent paper Vogl (2014) has developed a general algorithm
and, in the limit of slow scaled mutation rates, a maximum likeli-
hood estimate, of the two parameters defining the scaled instan-
taneous rate matrix for the case of bi-allelic neutral evolution. The
estimator is similar in style toWatterson’s estimator for the infinite
allele case (Watterson, 1975), and assumes the data to consist of a
site-frequency spectrum (or allele-frequency spectrum) obtained
from genotyping a finite number of individuals at a relatively large
number of independent siteswhose evolution is subject only to ge-
netic drift and identical-rate mutations. It is derived by assuming

∗ Corresponding author at: Mathematical Sciences Institute, Australian National
University, Canberra, Australia.

E-mail addresses: conrad.burden@anu.edu.au (C.J. Burden),
yurong.tang@anu.edu.au (Y. Tang).

the data has a beta-binomial distribution as a result of being sam-
pled from the well-known beta-distribution solution to the diffu-
sion limit of the neutral Wright–Fisher model (Wright, 1931). The
method is extended to include selection and the analysis of the low
mutation rate limit developed further by Vogl and Bergman (2015).

A necessary first step in generalising the Vogl estimator to the
multi-allele case, and in particular to the 4-allele case relevant to
genomic rate matrices, is the generalisation of Wright’s stationary
beta distribution to higher dimensions. This involves finding
a stationary solution to the multi-allelic forward Kolmogorov
equation (see Eq. (3) in the next section). There is no known
general solution to this partial differential equation for an arbitrary
instantaneous rate matrix.

However, physical mutation rates are extremely slow on the
scale relevant to the diffusion limit, and therefore we argue that
for practical purposes it is not necessary to solve the forward
Kolmogorov equation in its entirety over the full volume of the
3-dimensional simplex on which its solution is defined. Consider
for instance the numerical stationary solution to the discrete
Wright–Fisher defined by Eqs. (1) to (2), shown in Fig. 1. For the
purposes of illustration we have simulated this solution using
the popular Hasegawa–Kishino–Yano matrix (HKY85) (Hasegawa
et al., 1985) with a small population in order to render the
simulation numerically tractable, and mutation rates which are
unrealistically high by at least two orders of magnitude to enable
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Fig. 1. Stationary distribution of allele frequencies for the HKY85 model for a
haploid population of size N = 30 with parameters α = 0.2, β = 0.1, πA =

πT = 0.2 and πC = πG = 0.3, using the parameterisation defined in Hasegawa
et al. (1985). The corners labelled A, C , G and T correspond to allele frequencies i =

(N, 0, 0, 0), (0,N, 0, 0), (0, 0,N, 0) and (0, 0, 0,N) respectively, and the volume of
the sphere at each coordinate point is proportional to the probabilitymass function.

the distribution to be visible over the entire simplex on the scale
of the plot.

The distribution is clearly dominated by the corners of the
tetrahedron, indicating that the majority of genomic sites are
not polymorphisms (SNPs). This effect is explained in Vogl and
Bergman (2015) in the context of the 2-allele Moran model as a
strong dominance of genetic drift over mutations for polymorphic
sites. Most of the remaining support of the distribution lies on the
edges of the tetrahedron, which correspond to 2-allele SNPs. The
interiors of the four faces, corresponding to 3-allele SNPs, and the
interior volume of the tetrahedron, corresponding to 4-allele SNPs,
account for only a small fraction of the total probability. Consistent
with observation of the human genome (Hodgkinson and Eyre-
Walker, 2010; Cao et al., 2015; Phillips et al., 2015), themulti-allele
neutral Wright–Fisher model predicts that 3- and 4-allele SNPs
are extremely rare when scaled mutation rates are low. In fact,
when tri-allelic SNPs are observed, the least frequent allele is
generally observed in only 1% or 2% of the population (see Table S1
of Hodgkinson and Eyre-Walker (2010)), corresponding to points
very close to an edge of the tetrahedron.

Zeng (2010) has demonstrated that it is feasible to estimate
mutation rates and selection parameters from site-frequency data
via numerical solution of the multi-allelic discrete Wright–Fisher
model by assuming the stationary distribution to be restricted
to the corners and edges of the simplicial lattice. However an
analytic solution to the continuum diffusion limit would facilitate
far more computationally efficient maximum likelihood estimate
of parameters, and also provide physical insight into the dynamics
of mutation.

Below we present an approximate analytic solution to the
neutrally evolving multi-allelic forward Kolmogorov equation in
the form of a set of line densities defined on the edges of the
solution simplex for the general case of K alleles. The basis of our
solution is a novel parameterisation of the most general form of
the instantaneous rate matrix Q . The parameterisation consists of
writingQ as the sum of a time-reversible part (Tavaré, 1986) plus a
non-reversible part parametrised by (K −1)(K −2)/2 ‘probability
fluxes’ corresponding to a set of independent closed triangular
paths following edges of the solution simplex. Note that in this
paper the terms ‘‘reversible’’ and ‘‘non-reversible’’ are used in the

sense of a continuous-time Markov chain. A non-reversible rate
matrix allows mutations among all states, but the system is not
in detailed balance, that is to say themutation rate from allele-1 to
allele-2 need not balance themutation rate fromallele-2 to allele-1
at equilibrium. The assumption that rate matrices are reversible is
popular in the phylogenetics literature because the pulley principle
(Felsenstein, 1981) simplifies calculations. However there is no
biochemical justification for this assumption. We find that in the
limit of low mutation rates, and if neutral evolution is assumed,
asymmetry in the allele frequency spectrum along edges of the
solution simplex can only be explained by the non-reversible part
of Q . Equivalently, if Q is reversible, the allele frequency spectrum
is symmetric along each edge.

The structure of this paper is as follows. Section 2 contains
a review of the multi-allelic neutral Wright–Fisher model and
sets out the statement of the problem. Section 3 reviews the
K = 2 solution to the forward Kolmogorov equation with a
focus on non-standard boundary conditions. Sections 4–6 contain
our approximate solutions for the K = 3, 4 and arbitrary K
cases respectively. Section 7 discusses the strand-symmetric case.
Conclusions are summarised in Section 8. Appendix A is devoted
to deriving the asymptotic behaviour of the solution to Eq. (3)
near the simplex boundary in the limit of low mutation rates.
Appendix B is devoted to technical details of obtaining marginal
distributions of the stationaryK -allele solution in termsof effective
2-allele models.

2. Review of the multi-allelic neutral Wright–Fisher model

We consider the neutral evolution Wright–Fisher model for
K alleles, labelled A1 . . .AK (see, for example, Section 4.1 of
Etheridge (2011)). Given a haploid population of size N (or diploid
population of size N/2), let the number of individuals of type Aa at
time step τ be Ya(τ ) for discrete times τ = 0, 1, 2, . . . . Also, let uab
be the probability of an individual making a transition from Aa to
Ab in a single time step, where uab ≥ 0 and
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Y(τ ) = (Y1(τ ), . . . , YK (τ )), themulti-allele neutralWright–Fisher
model is defined by the transition matrix from an allele frequency
i = (i1, . . . , iK ) to an allele frequency j = (j1, . . . , jK ) in the
population given by the multinomial distribution
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This transition matrix defines a finite state Markov chain with a
state space of dimension


N+K−1
K−1


.

The usual diffusion limit is obtained by defining random vari-
ables Xa(t) = Ya(τ )/N equal to the relative proportion of type-Aa
alleleswithin the population at continuous time t = τ/N . The limit
N → ∞ and uab → 0 for a ≠ b is taken in such a way that the
K ×K instantaneous ratematrix Q , whose elements are defined by

Qab = N(uab − δab), (2)

remains finite. Here δab is the Kronecker delta, equal to 1 if a = b
and 0 otherwise. This limit gives the forward Kolmogorov equation
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