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a b s t r a c t

Most models for the evolution of mutation under frequency-dependent selection involve some form of
host–parasite interaction. These generally involve cyclic dynamics under which mutation may increase.
Here we show that the reduction principle for the evolution of mutation, which is generally true
for frequency-independent selection, also holds under frequency-dependent selection on haploids and
diploids that does not involve cyclic dynamics.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In large populations, when the selection on one ormore genetic
loci is constant over time (and hence frequency-independent),
and there is mutation (or recombination) among the alleles at
these loci, the Reduction Principle applies (Feldman and Liberman,
1986). The Reduction Principle states that a new allele introduced
at a locus that controls the mutation (or recombination) rate
among the alleles under selection at other (linked or unlinked)
loci near a stable equilibrium of themutation–selection system (or
recombination–selection system with linkage disequilibrium) will
invade the population if it reduces themutation (or recombination)
rate (Liberman and Feldman, 1986a,b). The same reduction result
holds for a gene that modifies migration in a migration–selection
system (Liberman and Feldman, 1989). The gene or genes on
which selection occurs are usually called ‘‘major’’, while the
locus controlling the parameter of interest (rate of mutation,
recombination, or migration) is called the ‘‘modifier’’ locus
(Feldman et al., 1997). The Reduction Principle applies to alleles
that reduce mutation, recombination, and migration rates under
any constant selection regime that allows an appropriate stable
equilibrium at which the modifier allele is introduced.

These evolutionary genetic models suggest an alternative to
the phenotypic dynamic approach, usually called ‘‘evolutionarily
stable strategy’’ (ESS), that Eshel and Feldman (1982) termed
‘‘evolutionary genetic stability’’ (EGS). The latter applies to both
haploid and diploid evolutionary dynamics. In the cases of
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mutation, recombination, and migration rates, the value zero has
the property of EGS. For the case ofmutation rate, Rosenbloom and
Allen (2014) use the terminology ‘‘evolutionary stable mutation
rate’’ (ESMR) to mean exactly the same thing. That the value zero
has the property of EGS also entails that when the relevant rate
is zero, a new modifier allele that increases the rate to a positive
value cannot increase in frequency at a geometric rate.

Violations of the Reduction Principle have been demonstrated
under a number of model scenarios that violate the conditions
stated above. For example, increased recombination may evolve
if the recombination-increasing allele arises while the major loci
are proceeding towards fixation (Maynard Smith, 1980, 1988;
Bergman and Feldman, 1990). Increased recombination may also
evolve when the major loci are under cyclically fluctuating
selection, either exogenously caused (Charlesworth, 1976) or
induced by host–parasite dynamics (Hamilton, 1980; Nee, 1989;
Gandon and Otto, 2007).

Mutation rates may also increase under some patterns of fluc-
tuating selection. This is often studied in the context of pheno-
typic switching between phenotypes, represented in population
genetic models as different haploid genotypes. Experimental (Acar
et al., 2005, 2008) and theoretical analyses (Leigh, 1970; Ishii et al.,
1989; Lachmann and Jablonka, 1996; Thattai and van Oudenaar-
den, 2004; Kussell and Leibler, 2005; Gaal et al., 2010; Liberman
et al., 2011) have shown that cyclically (and some forms of stochas-
tically) fluctuating selection can select for alleles that increasemu-
tation rates. However, the direction of change in mutation rates
can be very sensitive to the form of selection on the major loci,
for example, whether it is symmetric (Salathe et al., 2009; Liber-
man et al., 2011; Carja et al., 2014). The fluctuations in the selection
regime assumed in these studies are exogenous.

Most studies of mutation rate evolution with endogenously
changing selection have involved some form of host–parasite (or
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host–virus) interaction (Haraguchi and Sasaki, 1996; Kamp et al.,
2003; Pal et al., 2007; M’Gonigle et al., 2009). Mutation rates
can increase under host–parasite cycling. However, M’Gonigle
et al. show that the stable mutation rate decreases as the
recombination between the modifier and major genes increases. A
different kind of cyclical trait dynamics was used by Rosenbloom
and Allen (2014) in their analysis of the effect of frequency-
dependent selection on the evolution of the mutation rate. In
their model, the cycling was generated by ‘‘rock–paper–scissors’’
competition. The analysis of the invasion process for this model
was carried out using adaptive dynamics, namely comparison of
themarginal fitnesses of differentmutation-modifying alleles. This
analysis must be distinguished from the formal multi-dimensional
analysis of modifier evolution that has become standard in
population genetics (Feldman et al., 1997). Rosenbloom and Allen
(loc. cit.) found an evolutionarily stable mutation rate (ESMR)
that was non-zero. They also found, as did M’Gonigle et al. in
the host–parasite case, that recombination (as modeled in their
scheme, which is somewhat different from the way recombination
is incorporated into population genetic models) reduced the stable
mutation rate.

Although the model of Rosenbloom and Allen (2014) and its
predecessor Allen and Rosenbloom (2012) were developed in
terms of continuous time, the stability analyses that determined
invasion made use of the Perron–Frobenius structure of the local
stability matrix near the invaded equilibrium. This structure of the
positive matrix whose leading eigenvalue determined whether or
not a new modifier allele would invade also formed the basis of
the analyses by Liberman and Feldman (1986a,b) of the evolution
of mutation and recombination.

Our objective in this note is to explore how the evolution of
mutation rate is affected by frequency-dependent selection. We
use classical models of haploid and diploid selection on a single
(major) diallelic locus. The modifier locus affects the symmetric
(i.e., equal in both directions) mutation rate between the alleles
at the major gene. Our model of frequency-dependent selection
is classical—in the sense that the fitness is a function of the allele
frequency at themajor locus (see, e.g.,Wright, 1969, Chapter 2).We
show that if there is a stable mutation–selection equilibrium then
a newmutation-modifying allele introduced near this equilibrium
will invade if it reduces the mutation rate. As a result, zero
mutation has the property of evolutionary genetic stability (Eshel
and Feldman, 1982).We also show that this result does not depend
on the rate of recombination between the major and modifier loci
and that the zero mutation rate cannot be invaded at a geometric
rate.

2. The model

Consider a large population of haploids evolving under the
influence of selection, recombination, and mutation. The fitness
of an individual is determined by its genotype at one locus, with
alleles A and a, which is linked to a modifier locus with alleles M
and m that produce mutation rates µM and µm, respectively. The
mutation rates from A to a and from a to A at the major locus are
the same, and the modifier locus is selectively neutral so it does
not affect the fitness parameters for the major locus. Thus there
are four genotypes:

genotype AM Am aM am
fitness w1 w2 w3 w4
frequency x1 x2 x3 x4

(1)
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4

i=1 xi = 1. As the modifier locus is selectively neutral, we
have
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where r is the recombination fraction between the major and
modifier loci, D the linkage disequilibrium:

D = x1x4 − x2x3, (4)

and w is the mean fitness

w =

4
i=1

wixi. (5)

In what follows we will assume that the selection is frequency-
dependent; that is, wi = wi(x) for i = 1, 2, 3, 4 where x = (x1, x2,
x3, x4) is the frequency vector. We proceed to evaluate the effect of
the frequency-dependent selection on the evolution of mutation.
Specifically, our goal is to determine whether the Reduction
Principle for mutation rates seen in the case of constant selection
(Feldman and Liberman, 1986) holds when selection is frequency-
dependent.

3. Equilibria

In the absence of the modifier allele m (in which case recom-
bination is irrelevant) x2 = x4 = 0, and the transformation (3)
reduces to

wx′

1 = (1 − µM) w1x1 + µMw3x3
wx′

3 = (1 − µM) w3x3 + µMw1x1,
(6)

with x1 + x3 = x′

1 + x′

3 = 1. Let u = x1/x3, u′
= x′

1/x
′

3 and write
the frequency dependent fitness parameters as

w1 = w1(u), w3 = w3(u). (7)

Then in terms of u, the transformation (6) is equivalent to

u′
= f (u) =

(1 − µM) w1u + µMw3

µMw1u + (1 − µM) w3
. (8)

At equilibrium, f (u) = u and the equilibria are the solutions of
Q (u) = 0, where

Q (u) = µMw1u2
+ (1 − µM) (w3 − w1) u − µMw3 (9)

with w1 = w1(u), w3 = w3(u).
We will assume that Q (u) = 0 has a root u∗ that determines

a unique equilibrium x∗
= (x∗

1, 0, x
∗

3, 0) with x∗

1 = u∗/(1 + u∗),
x∗

3 = 1/(1 + u∗) while x2 = x4 = 0.

Remark 1. The kind of frequency-dependent selection on the
major loci included here precludes the kind of cycling in the
absence of mutation that is treated in Rosenbloom and Allen
(2014). That kind of cycling requires an analysis different from
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