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a b s t r a c t

Invasions are one of the most easily identified spatial phenomena in ecology, and have inspired a rich
variety of theories for ecologists’ and naturalists’ consideration. However, a number of arguments over the
sensitivities of invasion rates to stochasticity, density-dependence, dimension, and discreteness persist in
the literature.

The standard mathematical approach to invasions is based on Fisher’s analysis of traveling waves
solutions for the spread of an advantageous allele. In this paper, we exploit an alternative theory based
on Ellner’s premise that species invasions are best interpreted not as waves, but as random walks, and
that the discreteness of living organisms is fundamentally important. Using a density-dependent invasion
model in a stationary environmentwith indivisible (atomic) individualswhere reproduction and dispersal
are stochastic and independent, we show 4 key properties of Ellner’s invasions previously suggested by
simulation analysis: (1) greater spatial dispersal stochasticity quickens invasions, (2) greater demographic
stochasticity slows invasions, (3) negative density-dependence slows invasions, and (4) greater temporal
dispersal stochasticity quickens invasions. We prove the first three results by using generating functions
and stochastic-dominance methods to rank furthest-forward dispersal distributions. The fourth result is
proven in the special case of atomless theory, but remains an open conjecture in atomic theory. In addition,
we explain why, unlike atomless invasions, an infinitely wide atomic invasion in two-dimensions can
travel faster than a finite-width invasion and a one-dimensional invasion. The paper concludes with a
classification of invasion dynamics based on dispersal kernel tails.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Since ancient Greek natural philosophers Democritus and Leu-
cippus originated the concept of an atom (Curd, 2011), there has
been a tension between theories that treat nature as a compos-
ite of discrete particles (atoms), and theories that treat nature as
a smooth continuum (atomless). During the scientific revolution,
this tension took center stage in the competition between parti-
cle and wave theories of light (Inwood, 2005). At the turn of the
twentieth century, the issue reappeared as physicists speculated
on the cause of the ‘‘ultraviolet catastrophe’’ in empirical observa-
tions of black body radiation, eventually leading to quantum theory
(Kuhn, 1987). Around the same time, Einstein and Smoluchowski
were demonstrating howFourier’s continuous theory of heat prop-
agation could be alternatively understood in terms of the Brownian
motion of particles and atoms (Frey andKroy, 2005). And therewas
heated debate between Darwinians and Mendelians over whether
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evolution occurred through selection on distributions of continu-
ous variation or through selection on large discrete jumps in char-
acter (Provine, 2001). Ninety years later, in a much less famous but
ecologically important discussion, Durrett and Levin (1994) em-
phasized how the mistaken replacement of discrete spatial struc-
ture with continuum diffusion can lead to erroneous predictions
in evolutionary games. Now again, over the last two decades, con-
troversies between continuum and discrete models have arisen in
population ecologists’ theories of invasions.

Invasion theory is a rich field, with a wide variety of models.
Neubert and Parker (2004), Hastings et al. (2005), and Hui et al.
(2011) review the general theories, while Kot et al. (2004) present
a supplementary list of important theoretical results. From its birth
in the 1930s until the 1990s, invasion theory was dominated by
atomless models which are easy to analyze and provide elegant
results (Fisher, 1937; Skellam, 1951; Barton, 1979; Okubo et al.,
1989; Hosono, 1998). In these invasion models, the population
is represented as a continuous density that can be infinitely
subdivided, and the advance of an invasion can often be described
in terms of a traveling-wave solution. However, in the last two
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decades, alternative agent-based and particle models have been
put forward (Ellner et al., 1998; Tang and Bennett, 2010). In
these ‘‘atomic’’ models, the populations are represented by sets
of discrete and indivisible individuals. Ecologists are attracted to
atomicmodels because of their flexibility and innate parallels with
nature. Atomic models have also been studied mathematically
in some contexts—notably in reference to tribolium population
dynamics (Henson et al., 2001; Scheuring and Domokos, 2005). But
overall, atomic models have received relatively less mathematical
analysis.

The diversity of models has led to fingering of consensus, with
a variety of model-specific results. The story begins when Molli-
son (1972) discovered that epidemics that dispersed according to
fourth-order power-law kernels had a habit of leaping forward in
large steps, in contrast to exponentially-tailed kernels where the
waves of advance were more sedate. Two decades later, Kot et al.
(1996) showed that heavy-tailed dispersal kernels in mean-field
models could lead to invasions that progress as accelerating waves
rather than waves with a constant speed. This was an exciting re-
sult with the potential to resolve Reid’s paradox (Clark et al., 1998),
but the result also clashed with human intuition that the spread-
ing speed of an invasion must be bounded. Clark et al. (2001) sub-
sequently argued that natural stochasticity stops this acceleration
and only allows finite-speed invasions. Snyder (2003) performed
analyses on two light-tailed dispersal kernels and found density-
dependent stochastic simulations were significantly slower than
integral-difference equation theory predicted (Kot, 1992) and con-
cluded that ‘‘demographic stochasticity slows invasions’’. But Kot
et al. (2004) countered that density-independent stochastic mod-
els show that same spreading speeds as their density-independent
deterministic counterparts,while Kawasaki et al. (2006) provide an
example of how stochasticity increases the spreading speed of an
invasion, relative to a deterministic process with the same expec-
tations. More recently, Brockmann and Hufnagel (2007) showed
that wave fronts generated by a density-dependent particle sys-
temwhere particles dispersed according to Lévy flights couldmove
with constant velocity, rather than accelerating, and Pachepsky
and Levine (2011) observe that it is likely discreteness and density
dependence that are important. Hallatschek and Fisher (2015) pro-
vide a scaling-law approach to the analysis of long-range dispersal.
Jacobs and Sluckin (2015) provide an extensive simulation anal-
ysis of lattice theories, and conclude that while finite-population
stochasticity slows invasions and can stop acceleration in many
heavy-tailed kernels, the heaviest-tailed power-law kernels can
still exhibit accelerations.

It is quite difficult to make sense of this thick body of results
paper-by-paper. Different groups have adopted different models
and terminologies to explain their ideas, and these differences
can be challenging to reconcile. ‘‘Discrete models’’, for example,
may refer to models that describe spread on a lattice in continu-
ous time, spread in continuous space with difference equations, or
individual-basedmodels. ‘‘Stochasticity’’ may appear in confound-
ing formswhich cannot be easily compared acrossmodels. And the
differences between one and two dimensional models are not ob-
vious. These obstacles have slowed our synthesis.

Yet, after digesting the menagerie of models and vague ter-
minology, the collective mathematical research on invasions has
actually led to a relatively simple general theory. In this paper,
we will lay out this proposed synthesis, using a random-walk
metaphor for invasions. We will construct a nonlinear atomic
stochastic process, where individuals are represented discretely.
The comparison of special cases of this process shows that de-
mographic stochasticity and negative density-dependence slow
invasions, while dispersal stochasticity hastens invasions. These
results are mathematically proven using stochastic ordering
(Shaked, 1994), the Weierstrass’s product inequality (Bromwich,

1908), and the Heyde–Schuh inequality (Heyde and Schuh, 1978),
thus avoiding complications associated with simulations. Analy-
sis of incrementally-shifted extreme-value statistics of different
dispersal kernels under density-dependence reveals four separate
possible regimes of behavior for an ecological invasion’s random
walk: (1) a regime where there is a finite upper bound on the
speed of advancement, independent of density effects; (2) a regime
where upper bounds on the advancement speed are determined
by the strength of density-dependence behind the wave-front, but
progresses like a Brownian randomwalk; (3) a regimewhere upper
bounds on the advancement speed are determined by the strength
of density-dependence behind the wave-front, but progresses like
a Lévy flight; and (4) a regime where invasions eventually acceler-
ate past all constant upper bounds on their speed of advancement.
Formal arguments supporting this classification are provided in
appendices.

2. An atomic spatial model

Let us construct a hierarchical invasionmodel (Jerde et al., 2009)
in one spatial dimension with discrete non-overlapping genera-
tions and density-dependent mortality following settlement. The
model will be atomic, in the sense that the population’s state is
represented by a set of points on a line rather than a continuous
distribution. Each point represents the location of one individual.
We will consider only the case of a homogeneous population and
homogeneous space. Readers interested in heterogeneous popula-
tions should investigate matrix and integral projection extensions
(Rees et al., 2014; Neubert and Caswell, 2000).

In each generation, the dispersal of offspring is described by a
kernel k that is independent of the parent’s location, and let

K(z) := Prob(x < z) =

 z

−∞

k(x)dx (2.1)

be the cumulative probability distribution for this dispersal
kernel. The dispersal variables yt,i,j are the independent identically
distributed (IID) dispersal distances of the jth offspring of parent
i in generation t (yt,i,j 2 k, which reads ‘‘yt,i,j is sampled from
distribution k’’. We will adopt this uncommon notation to avoid
confusion with our subsequent use of ∼ to represent asymptotic
equivalence).

Let the IID random variables Bt,i be the number of offspring
produced by parent i in generation t . Each Bt,i is sampled from
progeny density r (Bt,i 2 r). This progeny density has probability
generating function (PGF)

R(s) :=

∞
ℓ=0

r
ℓ
sℓ = ⟨sℓ⟩ when ℓ 2 r, (2.2)

with ⟨·⟩ denoting the expected value of a random variable. As with
all PGF’s, R(s) is increasing, convex and s ∈ [0, 1] → R(s) ∈

[0, 1]. The basic reproduction number R0 := R′(1) is the expected
number of progeny. Readers interested in the use of generating
functions for the study of branching processes may consult any of
numerous sources, including the review article by Dorman et al.
(2004) and books by Matis and Kiffe (2000), Athreya and Ney
(1972), Harris (1963), and Ulam (1990).

In nature, individuals often fail to reproduce, and this can
lead to extinctions (Lande, 1993). But all of our simulation
experiments suggest that this complicates our invasion analysis
without changing the core results. So to avoid the complications,
we only consider populations where each adult produces at least
one offspring:

R(0) = r0 = Prob(Bt,i = 0) = 0, (2.3)

implying that R0 ≥ 1.
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