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a b s t r a c t

With the great advances in ancient DNA extraction, genetic data are now obtained from geographically
separated individuals from both present and past. However, population genetics theory about the joint
effect of space and time has not been thoroughly studied. Based on the classical stepping-stone model,
we develop the theory of Isolation by distance and time. We derive the correlation of allele frequencies
between demes in the case where ancient samples are present, and investigate the impact of edge effects
with forward-in-time simulations. We also derive results about coalescent times in circular and toroidal
models. As one of the most common ways to investigate population structure is principal components
analysis (PCA), we evaluate the impact of our theory on PCA plots. Our results demonstrate that time
between samples is an important factor. Ancient samples tend to be drawn to the center of a PCA plot.

Published by Elsevier Inc.

1. Introduction

Geography plays a central role in the pattern of genetic differen-
tiation within a species. Seminal work on describing the evolution
of continuous populations was done by Wright and Malécot. They
studied genetic differentiation and inbreeding in continuously dis-
tributed populations (Wright, 1943; Malécot, 1948). The result-
ing idea is that, under the assumption of local dispersion, genetic
differentiation accumulates with distance. This pattern of genetic
structure is called Isolation-By-Distance (IBD),which is detected by
computing measures of differentiation such as FST (Wright, 1943;
Nei, 1973; Weir and Cockerham, 1984), or correlation coefficients
(Malécot, 1955; Kimura and Weiss, 1964). Understanding the ef-
fect of geographic distance on population structure is an important
task for population geneticists, as it is a source of neutral genetic
variation (Slatkin, 1985; Rousset, 1997). Furthermore, IBDhas been
observed in humans and many other species (Sharbel et al., 2000;
Castric and Bernatchez, 2003; Ramachandran et al., 2005; Hellberg,
2009; Karakachoff et al., 2015).

The role of geography in neutral genetic variation has been
widely studied partly because of the many population genetic
studies of individuals sampled from different locations in present-
day populations. Because of the development of methods for
sequencing DNA from fossils, genomes of individuals alive at
previous times are now available to bring new information about
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the evolutionary processes that affected a species in the past. Since
the first studies of ancient DNA (aDNA) three decades ago (Higuchi
et al., 1984; Pääbo, 1985), techniques to retrieve DNA molecules
from ancient bones have tremendously developed Pääbo et al.
(2004).

Inmodern evolutionary biology, the similarity of differentiation
in space and time has been recognized (Depaulis et al., 2009; An-
drello et al., 2011; Teacher et al., 2011). Theoretical developments
predict the effect of time on FST and related quantities (Skoglund
et al., 2014). Epperson (2000) studied patterns of isolation by dis-
tance and time in ecology by using stochastic spatial time series
and identity by descent probabilities. However such theoretical
studies remain scarce.

The effect of separation in time can be studied using classical
statistical methods in population genetics, such as principal com-
ponent analysis (PCA) (Patterson et al., 2006). PCA is widely used
to determine relatedness between individuals, and is a convenient
way to represent geographic patterns (Novembre et al., 2008). But
PCA can also capture the differentiation between ancient andmod-
ern samples: the percentage of variance explained by time can
be expressed on the same scale as the percentage of variance ex-
plained by geography (Skoglund et al., 2014). Unfortunately, PCA
does not give a complete picture of how quantities such as Fst and
correlation coefficients evolve in time and space.

In this article we generalize the theory of IBD to allow for dif-
ference in the times at which different individuals are sampled.
We call this the theory of isolation by distance and time (IBDT).
We base our work on the stepping-stone model of Kimura (1953)
and add to the theoretical results already derived for this model
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(Kimura and Weiss, 1964; Weiss and Kimura, 1965; Maruyama,
1971a; Nagylaki, 1983; Cox and Durrett et al., 2002; De and Dur-
rett, 2007). We start by briefly reviewing the original results for
the infinite stepping-stone model at equilibrium and the decay of
correlation of allele frequencieswith distance. Then, we extend the
original work to derive the correlation between individuals sepa-
rated by distance and time. We perform simulations that show the
validity of the analytic results, even in the case of a finite number of
populations where some demes are subject to edge effect. We also
derive the expected coalescence times between samples separated
by time and space in circular and toroidal models (Slatkin, 1991,
1993). Finally we consider the consequences of IBDT on PCA in the
common case of a dataset made up of a large proportion genomes
from present-day individuals and few ancient genomes.

2. The stepping-stone model

The stepping-stone model describes the distribution of allele
frequencies in an infinite set of demes in different locations of the
space represented by Cartesian coordinates.We start by describing
the 1-dimensional case. Let p(k) be the frequency of one allele
at a bi-allelic locus in population k and p̄ be the average allele
frequency. In each generation, p(k) is updated with the following
three steps (Crow and Kimura et al., 1970):

• Exchange a proportionmi of migrants with demes at a distance
i.

• Exchange a proportion m∞ of migrants with a deme that has
fixed allele frequency p̄. The meaning of this step is discussed
later.

• Sample gametes of the next generation in the population.

In the case considered by Kimura and Weiss (1964), migrants
are exchanged only between neighboring locations in the first step,
so that mi = 0, i > 1. The second step consists of the exchange
of migrants with an external population at rate m∞. This event
is equivalent to reversible mutation with equilibrium allele fre-
quency m∞. In general m1 ≫ m∞. Random sampling of step 3 is
represented by a random change in the allele frequency ϵ(k), with
E[ϵ(k)] = 0, and E[ϵ(k)2] = p(k)(1−p(k))/2Ne, whereNe is the ef-
fective population size of a deme (Wright, 1940; Kimura and Crow,
1963).

Our interest is in the changes in allele frequency in one
generation. We consider p̃(k) = p̄ − p(k), the deviation from the
average frequency. Given these three steps,

p̃′(k) =


1 −

∞
i=1

mi − m∞


p̃(k) +

m1

2
(p̃(k − 1) + p̃(k + 1))

+
m2

2
(p̃(k − 2) + p̃(k + 2)) + · · · + ϵ(k). (1)

To simplify the notation, we define the operators S and L,

Sp̃(k) = p̃(k + 1), S ip̃(k) = p̃(k + i), i ∈ Z, (2)

L = m0S0 +

∞
i=1

mi

2
(S i + S−i), (3)

wherem0 = 1 −


∞

i=1 mi − m∞, so that,

p̃′(k) = Lp̃(k) + ϵ(k). (4)

The quantity of interest in this model is the correlation of
allele frequencies between two demes at locations k1 and k2. Let
r(k) be the correlation coefficient of allele frequencies between
populations that are k steps apart. Assuming equilibrium, we have

r(k) =
ρ(k)
ρ(0)

=
E[p̃(k1)p̃(k2)]

ρ(0)
=

E[Lp̃(k1)Lp̃(k2)]
ρ(0)

, (5)

where ρ(k) is the covariance in frequencies in demes k steps
apart. The within-population variance of allele frequencies, ρ(0),
value is detailed in Weiss and Kimura (1965). The mathematical
treatment of Eq. (5) byWeiss and Kimura (1965) using the spectral
representation of a correlation (Doob, 1953) gives the general
formula

r(k) =
C
2π

 2π

0

cos(kθ)dθ

1 −


∞
i=0

mi cos(iθ)

2 , (6)

where C is the normalizing constant chosen so that r(0) = 1.
In the case of a stepping-stone model where migrants are

exchanged only between neighboring demes (mi = 0, i > 1), r
can be approximated by an exponential function of k:

r(k) = e−


2m∞
m1

k
, (7)

as detailed in Kimura and Weiss (1964). This simple formula
conveys the important idea that in one dimension, the correlation
of allele frequencies between populations decays exponentially
with distance. In the 2-dimensional and 3-dimensional cases,
the correlation function is more difficult to approximate. Using
modified Bessel function, it has been shown that correlation at a
given distance is lower in these cases than in the 1-dimensional
case (Weiss and Kimura, 1965).

3. Isolation-by-distance-and-time

3.1. 1-dimensional case

We are here interested in the case where genetic samples are
collected fromdemes that are in different locations and at different
times (measured in generations). Let ρ(k, t) be the covariance
between allele frequencies of two demes separated by k steps and t
generations. We denote the coordinates of these demes by (k1, t1)
and (k2, t2), and the deviations in allele frequencies p̃(k1)(t1) and
p̃(k2)(t2). Since we assume the distribution of allele frequencies is
stationary in both time (equilibrium distribution) and space (all
migration rates are equal), we can consider these coordinates to
be (0, 0) and (k, t) with no loss of generality. Following previous
notation

ρ(k, t) = E[p̃(k1)(t1)p̃(k2)(t2)] = E[p̃(k)(t)p̃(0)(0)]. (8)

To characterize the evolution of the covariance between allele
frequencies with respect to time t , we iteratively apply the
operator L defined in Eq. (3). This operation describes the potential
trajectories of an allele. This process leads to

ρ(k, t) = Ltρ(k) (9)

with ρ(k) = ρ(k, 0) (see Appendix A).
Let r(k, t) be the correlation between allele frequencies of two

demes separated by k steps and t generations, Eqs. (5) and (9),
combined with the general formula of Eq. (6) gives

r(k, t) =
C
2π

 2π

0


∞
i=0

mi cos(iθ)

t
cos(kθ)dθ

1 −


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i=0

mi cos(iθ)

2 (10)

and the constant C is set such that r(0, 0) = 1 (Appendix B).
This equation reduces to

r(k, t) =
C
2π

 2π

0

[1 − m1 − m∞ + m1 cos(θ)]t cos(kθ)dθ
1 − (1 − m1 − m∞ + m1 cos(θ))2

(11)
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