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We consider the diffusion approximation of the multivariate Wright-Fisher process with mutation.
Analytically tractable formulas for the first-and second-order moments of the allele frequency distribution
are derived, and the moments are subsequently used to better understand key population genetics
parameters and modeling frameworks. In particular we investigate the behavior of the expected

Ki—’lyvl""frfj&' homozygosity (the probability that two randomly sampled genes are identical) in the transient and
gif?uiiéﬁq”ency stationary phases, and how appropriate the Dirichlet distribution is for modeling the allele frequency

distribution at different evolutionary time scales. We find that the Dirichlet distribution is adequate for
the pure drift model (no mutations allowed), but the distribution is not sufficiently flexible for more
general mutation models. We suggest a new hierarchical Beta distribution for the allele frequencies in
the Wright-Fisher process with a mutation model on the nucleotide level that distinguishes between
transitions and transversions.
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1. Introduction

Present day data sets for studying genetic variation within
and between species often consist of millions of markers and
hundreds to thousands of individuals. The huge number of
individuals makes tree-based analyses (e.g. based on phylogenetics
or coalescent theory) difficult because the number of possible
trees increases very fast with the number of individuals. This
difficulty is pronounced when studying closely related species,
where incomplete lineage sorting or deep coalescence events can
distort phylogenetic analyses (Maddison, 1997). The discrepancy
between species trees and gene trees can be taken into account by
using multispecies coalescence methods (Degnan and Rosenberg,
2009; Heled and Drummond, 2010). However, this more detailed
framework is computationally more challenging because the
unknown gene trees need to be marginalized out from the model in
order to carry out species tree inference. In some special cases the
gene trees can be marginalized out using dynamic programming
techniques (e.g. Bryant et al., 2012), but in general it is necessary to
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perform large-scale Monte Carlo simulations to do the integration
(Heled and Drummond, 2010).

An attractive alternative to tree-based methodology is to model
the allele frequencies over time in terms of a diffusion pro-
cess, which is derived as an infinite population limit of the
Wright-Fisher model. Unfortunately the transition density for
the diffusion process corresponding to the basic Wright-Fisher
model with a general mutation model remains unknown; the
solution to the Fokker-Planck equation is not available (Ewens,
2004, Chapter 5). We emphasize, however, that Griffiths (1979)
provides an expression for the transition density for the multivari-
ate Wright-Fisher diffusion process in a mutation model where
the mutation rate g; from allele i to allele j only depends on j, i.e.
q;j = g; (the so-called parent-independent mutation model). The
expression in Griffiths (1979) is in terms of orthogonal polynomi-
als. Griffiths and Spané (2010) provide an overview of spectral ex-
pansions of the transition density for the general Wright-Fisher
process in two dimensions and the parent-independent mutation
model in more than two dimensions.

Numerical approximations have also been proposed to approx-
imate the transition density, but they are limited to a small num-
ber of populations or species due to computational complexity (e.g.
Gutenkunst et al., 2009). The numerical solutions also assume that
each site has experienced at most one mutation and consequently
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has at most two alleles, which restricts their usage to closely re-
lated samples. For more distantly related samples where multial-
lelic loci are expected to occur, it is important to generalize to the
multivariate case (Jenkins et al., 2014).

An alternative strategy to numerically solve the Fokker-Planck
equation is to approximate the transition density by a parametric
distribution. This methodology has a long tradition in population
genetics and computational phylogenetics starting from the
seminal work by Edwards, Cavalli-Sforza and Felsenstein in the
1960s and 1970s (Edwards and Cavalli-Sforza, 1964; Cavalli-
Sforza and Edwards, 1967; Felsenstein, 1973), and continuing
topresent day (Nicholson et al., 2002; Gaggiotti and Foll, 2010;
Sirén et al., 2011; Pickrell and Pritchard, 2012). However, most of
the methods have been developed for situations where the time
span is sufficiently short to ignore mutations and consider only
pure drift. Furthermore, the parametric distributions have been
either the Gaussian or Dirichlet distributions.

We derive the first- and second-order moments of the multi-
allelic Wright-Fisher process with mutation and use the moments
to characterize genetic variation and to fit parametric models.
Our approach generalizes the work by Sirén (2012) and Sirén
et al. (2013) to arbitrary mutation models. In the first part of the
paper (Section 2) we provide new analytically tractable formulas
for the first- and second-order moments of the multivariate
Wright-Fisher model with mutation. These new formulas allow
us to characterize the expected mean and (co)variance of the
frequency of an allele, and in particular we investigate in detail the
expected homozygosity (Section 3). Furthermore we demonstrate
how our formulas can be used to re-derive previous results for
the various general symmetric models considered in Griffiths
(1980). We emphasize that our mutation structure is completely
unrestricted.

In the second part of the paper (Section 4) we use the
expressions for the means and (co)variances of the allele
frequencies to obtain insight into approximate models for the
allele frequency distribution over time. In particular we find that
while the Dirichlet model is a suitable approximate model for the
allele frequency distribution in the Wright-Fisher process with no
mutation (pure drift), it is not appropriate for the Wright-Fisher
model with a mutation structure that corresponds to the Kimura
model. Instead, we propose a novel hierarchical Beta model for
the Wright-Fisher process with Kimura mutations. The paper ends
with a brief summary of our main findings, and a discussion of
similar methodology.

2. First- and second-order moments in the Wright-Fisher with
mutation process

We consider a constant-sized haploid population with N
individuals. We denote by z(m) = (z;(m), ..., zx(m)) the row-
vector of the number of alleles 1,...,K in generation m, and
we let U be the K x K mutation probability matrix such that
Uj; is the probability for a mutation from allele i to allele j in a
generation. The Wright-Fisher model with mutation is then given
by the multinomial distribution

z(m + 1)|z(m) ~ Mult(N, x(m)U), (1)

where x(im) = z(m)/N is the allele frequency in generation m.
We are now in a position to formulate our main result:

Theorem 1 (General Formulas for the Mean and Variance in
the Wright-Fisher with Mutation Process). Consider the K-allele
Wright-Fisher model with mutation probability matrix U and with
initial allele frequency x(0). Define the rate matrix Q = N(U — I). In

the diffusion approximation the mean of the allele frequency is given
by

E[x(D)|x(0)] = x(0)e®, (2)

and the variance is given by

t
Var[x(t)|x(0)] = / e~ (e%) diag{x(0)e2“ 9} (e%)ds
0

— (e%)'x(0)'x(0)e¥ (1 — e h). (3)

Here we make use of a slight abuse of notation such that x(t) is the
allele frequency distribution in generation Nt.

Despite the huge interest in the Wright-Fisher process we
believe the clean formula for the variance is a new result.

Proof. Repeated use of the law of total expectation gives the mean
value

E[x(m)] = E[E[x(m)|x(m — 1)]] = E[x(m — 1)U]
= Ex(m— DU =--- =x(0)U™,

where for ease of notation we have omitted the conditioning on
x(0). We approximate U™ as follows

um — ytN — [{1+ w —])}N]t = [{I+Q/N}N]t
~ (9! = e¥,

where we scale time as m = tN and define Q = N(U —1I). Note that
with this definition Q becomes a rate matrix where off-diagonal
entries are non-negative and rows sum to zero. Thus we have, with
a small abuse of notation,

E[x(t)|x(0)] = x(0)e.

The proof of the variance is more involved, but the main idea is to
make repeated use of the law of total variance. The proof can be
found in Appendix A. O

Many procedures are available for calculating matrix exponen-
tials (e.g. Moler and Van Loan, 2003), so a numerical calculation of
the mean is straight forward. Calculating the variance is more dif-
ficult. In Appendix B we provide an analytical expression for the
mean and variance in the case of a reversible mutation matrix. The
expression is based on an eigenvalue decomposition of the rate ma-
trix.

There is a long tradition for careful investigation of mutation
models in phylogenetics (e.g. Felsenstein, 2004, Chapter 13). In this
paper we consider in particular the pure drift model (U = I; see
Corollaries 3 and 5), the Jukes-Cantor model (U; = u, i # j;
see Corollaries 4 and 8), and the symmetric model (U = U’;
see Theorems 7 and 9). We give special attention to the Kimura
model (Felsenstein, 2004, page 196-200) with K = 4 and mutation
probability matrix

Ku if mutation i — j is a transition
Uj=u if mutation i — j is a transversion
1—+2u ifi=j

or, equivalently,

Nku if mutation i — j is a transition
Qj = {Nu if mutation i — j is a transversion (4)
—NK +2)u ifi=j.

We parameterize the rate matrix using either « = N«u (the rate
for a transition) and 8 = Nu (the rate for a transversion), or using
k = a/p (the ratio of the transition rate and transversion rate) and
0 = «a + 28 = N(x + 2)u (the mutation rate).
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