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a b s t r a c t

Network structure is a dominant feature of many biological systems, both at the cellular level and within
natural populations. Advances in genotype and gene expression screeningmade over the last few decades
have permitted the reconstruction of these networks. However, resolution to a single model estimate
will generally not be possible, leaving open the question of the appropriate method of formal statistical
inference. The nonstandard structure of the problemprecludesmost traditional statisticalmethodologies.
Alternatively, a Bayesian approach provides a natural methodology for formal inference. Construction
of a posterior density on the space of network structures allows formal inference regarding features of
network structure using specific marginal posterior distributions.

An information theoretic approach to this problem will be described, based on the Minimum
Description Length principle. This leads to a Bayesian inference model based on the information content
of data rather than onmore commonly used probabilistic models. The approach is applied to the problem
of pedigree reconstruction based on genotypic data. Using this application, it is shown how the MDL
approach is able to provide a truly objective control for model complexity.

A two-cohort model is used for a simulation study. The MDL approach is compared to COLONY-2, a
well known pedigree reconstruction application. The study highlights the problem of genotyping error
modeling. COLONY-2 requires prior error rate estimates, and its accuracy proves to be highly sensitive to
these estimates. In contrast, the MDL approach does not require prior error rate estimates, and is able to
accurately adjust for genotyping error across the range of models considered.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The inference of network structure has assumed increasing im-
portance in the life sciences with the advent of high-dimensional
molecular data. That discernible forms of dependence in such
data can be used to infer network structure has been confirmed
by mathematical theory and numerous applications ranging from
gene regulatory networks to pedigrees (Rissanen et al., 2007; Lee
and Tzou, 2009; Vignes et al., 2011;Marbach et al., 2012). However,
the nonstandard form of the inference, in which the ‘parameter’ is
a graph or similar object, precludes classical statistical methods,
leaving open the problem of controlling for false positives and de-
termining confidence levels.

In this article we review a general approach to this problem,
based on the following three principles:
1. A full Bayesian solution permits formal inference that is

accurate and computationally efficient.
2. The correct choice of the prior density on network structure is

crucial. Reasonable principles of invariance exist with which to
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guide the choice of uninformative prior, to which informative
prior information can be appended.

3. Information theory, as proposed under the Minimum Descrip-
tion Length (MDL) principle, provides the mathematical basis
for Bayesian models with predictable and intuitive properties.
Probabilistic models, which often rely on untestable assump-
tions, are not needed. The problem is formulated as a data
compression problem, withmodels interpreted as forms of reg-
ularity which may be exploited for greater efficiency.

This approach will be applied to the problem of pedigree
reconstruction (PR), a seminal problem in population biology
involving the inference of joint kinship forms using genotypic
data (Pemberton, 2008; Jones et al., 2010; Harrison et al., 2013).

This article will cover the following topics. A brief introduction
to graphical models, in particular the Bayesian network, will be
given in Section 2. The relationship between this model and the
problem of pedigree inference will be reviewed, giving conditions
under which a pedigree may be modeled as a Bayesian network,
and the implications for cases in which this does not hold.

Section 3 will review methodologies associated with the
inference of graph structure. The basis for a Bayesianmethodology
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will be given, with a discussion of both the choice of prior
distribution for graph structure, and of related computational
issues.

Section 4 introduces the Minimum Description Length (MDL)
principle, and its relationship to Bayesian inference. Section 4.1
provides a brief introduction to basic coding theory, onwhichmost
MDL analysis is based.

Section 5 elaborates on the discussion on prior distributions of
Section 3.1 in the context of the MDL method. It is shown how
a rigorous solution to an inference problem can be derived by a
purely objective (and apparently unrelated) criterion, in particular,
optimal data compression.

In Section 6 the MDL principle is applied to PR. A general
approach is outlined, based on the efficient coding of genotype
data assisted by pedigreemodels. Issues such as genotyping errors,
missing data and linkage are discussed.

In Section 7 the approach of Section 6 is applied to a pedigree
model based on two generational cohorts. The MDL method is
compared to the widely used PR application COLONY 2 (Jones and
Wang, 2010;Wang, 2013;Wang and Scribner, 2014). The emphasis
is on the respective abilities of themethods to accurately adjust for
genotyping error. Section 8 summarizes the results in a conclusion.

2. Graphical models, Bayesian networks and pedigrees

We first introduce some terminology. A graph G = (V , E) is
a collection of nodes V and edges E, which are either ordered
(directed) or unordered (undirected) pairs of nodes. Given the
directed edge a → b we say that a is a parent of b, or that b is a
child of a. A directed path from nodes a1 to am is any sequence of
nodes a1, . . . , am such that G contains directed edges ai → ai+1,
i = 1, . . . ,m − 1. If a directed path exists from a to c , then c is a
descendant of a, and a is an ancestor of c. A cycle is a directed path
with a common start and end node. A directed acyclic graph (DAG)
is a directed graph which contains no cycles. A directed graph is
completely defined by specifying the parent sets Si for each node i.
The number of parents of a node (equal to |Si|) is referred to as its
indegree. In a DAG, a nodewithout parents is a founder (a DAGmust
contain at least one). A subgraph ofG is a graph forwhich nodes and
edges are subsets of V and E, respectively.

A probabilistic graphical model (PGM) generally consists of a
graph G with random variables X = (X1, . . . , XN) associated with
nodes labeled V = {1, . . . ,N} which possesses joint density
f (x) = f (x1, . . . , xN). If S ⊂ V then X[S] denotes the vector
of components Xi associated with nodes i ∈ S. In PGMs such as
Bayesian networks orMarkov networks (Koller and Friedman, 2009)
the density f and graph G are related in the sense that f satisfies
a collection of conditional independence constraints implied by
G (formally, only the density f is needed to completely define
the model). PGMs may differ in classes of graphs used (DAGs for
Bayesian networks and undirected graphs for Markov networks).
The PGM most relevant to the problem of PR is the Bayesian
network, which we discuss next.

2.1. Bayesian networks

The Bayesian network (BN) is a type of graphical model which
has been used in a number diverse fields ranging from artificial
intelligence to the modeling of gene regulatory networks (Pearl,
1988; Koller and Friedman, 2009; Scutari, 2010). Suppose we are
given a random vector X = (X1, . . . , XN), with joint density f (x) =

f (x1, . . . , xN). Then f is a BN if there is at least one DAG G on nodes
{1, . . . ,N} such that

f (x) =

N
i=1

f (xi | x[Si]), (1)

where Si are the parent sets defining G and f (xi | x[Si]) is the
density of Xi conditional on X[Si]. If Si = ∅ then f (xi | x[Si]) is equal
to the marginal density of Xi. Note that (1) implies that founder
components of X are independent. Conditions under which (1)
holds are well known, and take several forms. For our purposes we
cite the following (Koller and Friedman, 2009).

Definition 1. A random vector X satisfies the local Markov prop-
erty (LMP) for some DAG G if each Xi is independent of its nonde-
scendants when conditioned on X[Si] (this implies that values of Xi
associated with founders of G are mutually independent).

BNs are alternatively characterized in the following way.

Definition 2. A random vector X is complete for some DAG G if its
distribution can be factorized according to (1) for G.

A central result in the theory of BNs (Pearl, 1988) is that a
multivariate density f may be decomposed according to (1) when
the LMP of Definition 1 holds, so that Definitions 1 and 2 are in this
sense equivalent, and both define a BN.

Intuitively, Definition 2 implies that there are no missing edges
inG, that is, edges thatwould be needed to permit the factorization
(1). As an example, consider a BN model for data X = (X1, X2, X3),
based on DAG Gwith edges 1 → 2 and 1 → 3. This means that the
distribution of X can be factorized as

f (x) = f (x1)f (x2 | x1)f (x3 | x1),

so that X is complete. Furthermore, the subvectors (X1, X2) and
(X1, X3) are also complete with respect to G (or the relevant
subgraph of G), but this is not true of subvector (X2, X3).

The factorization (1) makes the BN quite tractable, both
analytically and computationally. To see this, suppose a BN is used
tomodel amultivariate normal density. Inmost cases, the indegree
within G possesses an upper bound significantly smaller than N .
This will mean that the number of parameters defining the model
is of order O(N). On the other hand, a general multivariate normal
density requires order O(N2) parameters. Thus, a significant
reduction in modeling complexity follows from Definition 1.

2.2. Pedigree reconstruction and graphical models

There is a clear relationship between graphical models and
pedigree reconstruction that has been noted in the literature
(Almudevar, 2003, 2007b; Riester, 2009; Cowell, 2009; Almudevar
and LaCombe, 2012; Sheehan et al., 2014). The DAG is a natural
representation for a pedigree, constructed using directed edges
from parent to offspring. Clearly, a pedigree interpreted as a
directed graph cannot contain a cycle. Furthermore, the laws of
Mendelian inheritance, at least under certain linkage assumptions,
imply the type of conditional independence assumptions which
define a Bayesian network.We next consider the question of when
a PR problem can be modeled as a BN.

Suppose we are given a set of labeled individuals V = {1, . . . ,
N}, to be interpreted as nodes in a graph. We may refer to the
larger population V from which V is sampled. We also have data
X = (X1, . . . , XN) where Xi represents a genotype observation
from L loci.

A pedigree graph (PG) G(V ) may be defined as an exhaustive
specification of all parent–offspring (PO) dyads within V (as a
directed edge from parent to child). If |Si| = 0 then i is a founder,
and if |Si| = 1 then we say i is a semifounder (the parent not
included in V is a hidden parent). If Si ⊂ V are the two parents
of i, then the conditional distribution f (xi | x[Si]) of the offspring
genotypesXi given the parental genotypes iswell known, following
from Mendelian probability laws. If i is a founder, then f (xi |

x[Si]) = f (xi) is the marginal distribution of Xi, equivalent to
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