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a b s t r a c t

Motivated by tumor growth and spatial population genetics, we study the interplay between evolutionary
and spatial dynamics at the surfaces of three-dimensional, spherical range expansions. We consider
range expansion radii that grow with an arbitrary power-law in time: R(t) = R0(1 + t/t∗)Θ , where
Θ is a growth exponent, R0 is the initial radius, and t∗ is a characteristic time for the growth, to be
affected by the inflating geometry. We vary the parameters t∗ and Θ to capture a variety of possible
growth regimes. Guided by recent results for two-dimensional inflating range expansions, we identify
key dimensionless parameters that describe the survival probability of amutant cell with a small selective
advantage arising at the population frontier. Using analytical techniques, we calculate this probability for
arbitrary Θ . We compare our results to simulations of linearly inflating expansions (Θ = 1 spherical
Fisher–Kolmogorov–Petrovsky–Piscunov waves) and treadmilling populations (Θ = 0, with cells in the
interior removed by apoptosis or a similar process).We find thatmutations at linearly inflating fronts have
survival probabilities enhanced by factors of 100 ormore relative tomutations at treadmilling population
frontiers. We also discuss the special properties of ‘‘marginally inflating’’ (Θ = 1/2) expansions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Early tumor evolution is driven by rare driver mutations that
sweep the prevascular tumor population at the frontier and push
the growing cell mass further down the path toward metastasis.
Hence, an understanding of the evolutionary dynamics govern-
ing the survival of such mutations is crucial in cancer prevention
(Merlo et al., 2006; Vogelstein et al., 2013). One significant, largely
unexplored aspect of this evolution is the effect of tumor geome-
try. An important in vitro model of cancer is the multicellular tu-
mor with an approximately spherical shape, or ‘‘spheroid’’. The
spheroid captures many of the essential features of solid tumors
in vivo and is a model for anti-cancer therapies (Kunz-Schughart,
1999; Santini and Rainaldi, 1999; Hirschhaeuser et al., 2010).
Spheroids are especially useful for understanding small, avascu-
lar tumors. In the later stages of growth, in order for the tumor to
survive, it requires a vascular system and undergoes angiogenesis
(Weis and Cheresh, 2011). The growth then becomes more com-
plicated, and more sophisticated modeling efforts are necessary
(Shirinifard et al., 2009; Alarcón et al., 2005). We focus here on the
earlier evolutionary dynamics of spheroidal range expansions in
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two and three dimensions. We assume that attractive cell–cell in-
teractions keep such aggregates approximately spherical, i.e. that
there is an effective surface tension, similar to that observed for
yeast cell colonies (Nguyen et al., 2004). Although we are moti-
vated by tumor evolution, ourmodels are intended to be quite gen-
eral. Two-dimensional and three-dimensional expansions may be
realized in experiments, for example, usingmicrobial or yeast pop-
ulations in hard and soft agar, respectively (Korolev et al., 2012,
2011; Lavrentovich et al., 2013a).

We will be particularly interested in computing the survival
probability of a mutation that occurs among the dividing cells at
the surface of a spherical or circular population of initial radius
R(t = 0) = R0, which may or may not increase in time. In general,
the radius R(t) has a complicated time dependence, especially in
tumor growth. At the early stages, cells divide everywhere inside
the tumor, and the cluster radius grows exponentially in time. After
the tumor reaches a size larger than a nutrient shielding length
(Lavrentovich et al., 2013b), nutrients will no longer be able to
diffuse into the tumor interior. This effect, combined with inward
pressure from the surrounding non-cancerous tissue (Cheng et al.,
2009; Montel et al., 2011, 2012), decreases the growth rate toward
the center of the tumor. The radius R(t) then grows more slowly.
We will model the growth generally as

R(t) = R0


1 +

t
t∗

Θ

, (1)
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Fig. 1. A schematic of a treadmilling tumor. Due to nutrient shielding, cells divide
in a thin green region at the frontier. In the red region, cells are in an arrested state
and do not grow. In the necrotic core, cells undergo apoptosis and their contents are
flushed out of the cluster, resulting in an overall volume loss. This volume loss can
balance the gain of volume at the cluster periphery, resulting in a ‘‘treadmilling’’
effect and a cell mass with a constant radius (Cheng et al., 2009; Montel et al., 2011,
2012; Stott et al., 1999). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

where R0 is the initial tumor radius, Θ is a (possibly time-
dependent) growth exponent, and t∗ is a characteristic time for
the power-law growth in an inflating geometry. Both Θ and t∗
may be tuned to model various growth regimes. For example, for
a substantial portion of the growth in tumors, the radius grows
linearly in time (Θ = 1), and t∗ = R0/v, where v is the front speed
(Brú et al., 2003). Linear growth and nutrient shielding are also
present in microbial populations grown in Petri dishes (Korolev
et al., 2012). Eq. (1) can also model an exponential growth regime
R(t) = R0eλt with rate λ if we let both Θ, t∗ → ∞, such that
λ = Θ/t∗ is held constant.

Eventually, apoptosis may be induced at the tumor center, cre-
ating a necrotic region (Cheng et al., 2009; Montel et al., 2011,
2012), illustrated in Fig. 1. The cells at the tumor periphery con-
tinue to divide relatively rapidly. Thus, a ‘‘treadmilling’’ effect is
created, and the tumor experiences a rapid turnover of cells at its
surface while remaining the same size, a situation we represent by
a growth exponent Θ = 0 in Eq. (1). We will show that the dif-
ferent growth regimes captured by varying Θ have dramatically
different consequences for the fate of mutations at the tumor fron-
tier. We will focus on Θ = 0, Θ = 1, and Θ = 1/2, capturing,
respectively, treadmilling, linear inflation, and an intriguing bor-
derline growth regime.

The actively growing region in a tumor mass or a spherical mi-
crobial population can be quite thin, with a width of just a few
cell diameters (Folkman and Hochberg, 1973; Lavrentovich et al.,
2013b). In this case, genetic drift is strong and can locally fix the
mutation at the population frontier. This local fixation creates a
mutant ‘‘sector’’, i.e., a region along the front that is entirely oc-
cupied by the mutant cells. Example sectors, marked in green, are
shown in Fig. 2 for circular and spherical range expansions. Previ-
ous studies have focused on the deterministic movement of these
mutant sectors: The sectors inflate or deflate due to a mutant se-
lective advantage or disadvantage, respectively (Antal et al., 2013).
However, genetic drift will introduce fluctuations in the sectormo-
tion at its boundaries that can drive the mutation to extinction, as
illustrated on the left panels of Fig. 2(a) and (b). For example, in cir-
cular expansions (Fig. 2(a)), the sector has two boundaries which
both perform random walks, as observed in microbial range ex-
pansions (Korolev et al., 2010, 2012). Selection introduces a bias
to the sector boundary motion. Also, the increasing population ra-
dius R(t) will deterministically increase the distance between the
boundaries. If the sector boundaries collide, the sector vanishes,
and the mutation goes extinct (left panel of Fig. 2(a)).

Because the two boundaries of mutant sectors in two-
dimensional expansions perform random walks, the distance

Fig. 2. Examples of simulated mutant clusters (green cells) in two- and three-
dimensional range expansions (see Section 2), generated using two different values
of the key dimensionless selection parameters κ2D,3D defined in Eq. (2). (a) Circular
range expansions with a uniform front with an initial radius R0 = 50 average
cell diameters and a single initial mutant green cell at the population frontier. (b)
Spherical range expansions with uniform fronts and a single green cell at the initial
population frontier with radius R0 = 10 cell diameters. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this article.)

between the boundaries performs a randomwalk as well. The mu-
tant survival probability, then, is the probability that this distance
never vanishes, i.e., that the randomwalk it performsnever reaches
the origin. Such a probability is a well-studied first-passage prop-
erty of a random walk (Redner, 2001). Previous studies, such as
Hallatschek and Nelson (2010); Korolev et al. (2010) and Lavren-
tovich et al. (2013a), have exploited these known random walk
results to calculate survival probabilities of mutations in two-
dimensional populations. We will review some of these previous
results for two-dimensional expansions and generalize them to ar-
bitrary growth exponents Θ . We will then use them to motivate
our discussion of three-dimensional expansions.

In three-dimensional populations, the focus of the present
work, the mutant sector can have a complex, branched shape, as
shown in Fig. 2(b). Characterizing the boundary positions with just
two random walks is impossible in this case. Although we can still
treat mutant cell lineages using random walks (see, e.g., Cox and
Griffeath, 1986 or the chapter on voter models in Liggett, 1985),
incorporating selection is more complicated than in the two-
dimensional case (Bramson and Griffeath, 1981). Also, we know of
no generalization to inflating frontiers. So, instead of mapping to
random walks, we study the time evolution of the coarse-grained
density of mutant cells along the population frontier of spherical
range expansions. We then apply a field-theoretic analysis of the
time evolution that allows us to treat genetic drift, selection, and
inflation within a single theoretical framework.

By using random walk theory for two-dimensional range
expansions and field-theoretic techniques for three-dimensional
ones, we will show that the key dimensionless parameters for
mutant survival are, respectively,

κ2D = s


t∗

τg
and κ3D =

st∗

τg
, (2)

where t∗ is the characteristic time of the radius growth defined in
Eq. (1), s is the selective advantage, and τg is a generation time. The
mutant survival will also depend on the initial number of mutant
cells and the growth exponent Θ . The mutant cluster shapes at
different κ2D,3D for linearly inflating frontiers (Θ = 1 in Eq. (1))
are illustrated in Fig. 2(a) and (b) for two- and three-dimensional
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