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a b s t r a c t

Motivated by problems in conservation biology we study genetic dynamics in structured populations of
diploid organisms (monoecious or dioecious). Our analysis provides an analytical framework that unifies
substantial parts of previous work in terms of exact identity by descent (IBD) and identity by state (IBS)
recursions. We provide exact conditions under which two structured haploid and diploid populations are
equivalent, and some sufficient conditions under which a dioecious diploid population can be treated as a
monoecious diploid one. The IBD recursions are used for computing local andmetapopulation inbreeding
and coancestry effective population sizes and for predictions of several types of fixation indices over
different time horizons.
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1. Introduction

The effective size Ne is the most widely used parameter to
quantify rate of loss of genetic variation. The concept was first in-
troduced by Wright (1931, 1938) as the size of a homogeneous
population without mutation or selection and binomial variation
of offspring numbers that has the same expected change of some
genetic characteristic (e.g. inbreeding) per generation as the stud-
ied one. Many versions of Ne have been developed since, as re-
viewed for instance by Crow and Denniston (1988), Caballero
(1994), Wang and Caballero (1999), Waples (2002, 2010), and
Charlesworth (2009).

One of the most important applications of Ne is conservation
biology (Allendorf and Ryman, 2002; Traill et al., 2010), and the
present work was initiated from practical, real life conservation
and management questions. Over the last centuries the rate of
extinction of species and populations has increased by three or-
ders of magnitude as compared to ‘‘normal’’, background extinc-
tion rates (Pimm et al., 2014), and many natural animal and plant
populations are declining in size and are becoming fragmented
over space (Groom et al., 2005). Numerous empirical studies have
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documented loss of genetic variation in such reduced and/or frag-
mented populations (e.g., Larson et al., 2002, Nabata et al., 2004
and Kettle, 2014) as well as associated negative effects such as in-
breeding depression (Frankham, 2005; Liberg et al., 2005; Räikkö-
nen et al., 2006, 2009).

General conservation genetic rules of thumb for the geneti-
cally effective population sizes required to avoid excessive rates
of inbreeding and drift were suggested over three decades ago
(Franklin, 1980), and the so-called 50/500 rule is now widely es-
tablished (Jamieson and Allendorf, 2012), suggesting an Ne > 50
for short term conservation and Ne > 500 for long term conser-
vation. However, this rule refers to single, isolated populations.
Analytical approaches for understanding and computing Ne for
subdivided so-called metapopulations (Levins, 1970; Harrison and
Hastings, 1996) have not been available, where separated subpop-
ulationsmay vary in size and even become extinct/recolonized.We
initiated work to develop such analytical means, and recently pre-
sented a general approach for modelling effective size in subdi-
vided populations over time (Hössjer et al., 2014) under a haploid
assumption typical formany population geneticsmodels. Here, we
extend this work for diploid organisms. This involves four major
mathematical contributions:

First, we provide a framework for a large class of diploid (mo-
noecious or dioecious) structured and time-varying populations in
Sections 2 and 3. We use a very general definition of a structured
population as one consisting of several different subpopulations,
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where individuals within each subpopulation share some features.
This includes many settings that have not been dealt with before
in a unified way, such as spatial subdivision into geographical sub-
units or demes of arbitrary size and possibly asymmetric migra-
tion, an age-structured population with sex-specific survival and
birth rates for the various age classes, or a pedigree of arbitrary
form. Subpopulations can either be small or large, with sizes vary-
ing froman infinitely large continent to single individuals of a pedi-
gree (cf. Crow and Kimura, 1970, Chapter 3). It is possible in this
context to consider a pedigree whose individuals are distinct sub-
populations,with occasional immigration from larger ‘‘background
populations’’. The individuals have either unknown or known sex,
withmale and female gametes that are distinguishable or not. Time
dynamics is defined through a reproduction cycle that allows for
mating, selfing or cloning. Since the number of subpopulationsmay
vary with time, it is also possible to incorporate subpopulation ex-
tinction and recolonization into our model.

Second, we use exact matrix analytic techniques to find recur-
sions for probabilities that two alleles share a common ancestor
identity by descent (IBD) or identity by state (IBS) in Sections 2, 3
and 7. Within our studied class of subdivided diploid populations,
this requires a separate treatment for pairs of genes drawn from the
same individual, from different individuals of the same subpopula-
tion, or from different subpopulations. In particular, a general way
of exploiting symmetries of the model is introduced in Section 4 in
order to reduce dimensionality.

Third, we compare the diploid IBD-recursions with the corre-
sponding haploid ones in Section 5. We find exact conditions in
terms of randommating, random selfing and random coalescence,
under which a monoecious diploid recursion is equivalent to the
corresponding haploid recursion of Hössjer et al. (2014). We also
give some sufficient conditions under which a diploid dioecious
population can be reduced to a diploid monoecious one, where
each pair of subpopulations of males and females, that represent
different geographic demes or age classes, has been replaced by
one monoecious subpopulation. We believe these results are im-
portant for at least two reasons. It gives theoretical insights into
how the genetic composition of a population is affected by diploidy
and two sexes, and it provides guidelines when computationally
more feasible models (either monoecious diploid or haploid) can
be used, with little or no loss of information.

Fourth, we use the diploid IBD- and IBS-recursions to compute
effective sizes in Section 6. The effective size of a subdivided pop-
ulation is not captured by one single number though, since mi-
gration causes inbreeding to increase at a time varying rate. We
therefore define the effective size as a time varying curve, as in
Hössjer et al. (2014), so that short and long term effects of ge-
netic drift and migration are captured. In addition, the diploid
framework of this paper makes it possible to treat inbreeding and
coancestry effective sizes separately, which is crucial for accurate
modelling of inbreeding depression. It is also possible to incorpo-
rate local and global effective sizes by varying the weights of sub-
populations.

Fifth, in Section 7 we use the diploid IBD- and IBS-recursions
to predict various measures of subpopulation differentiation and
departures fromHardy–Weinberg proportions, over different time
horizons. Wright (1943, 1951) introduced a number of fixation in-
dices for populations that are structured in a way of being geo-
graphically subdivided. Of these FST is a measure of subpopulation
differentiation that quantifies genetic variation among subpopula-
tions (S) within the total population (T ), whereas FIS and FIT both
quantify genetic variation within individuals (I) relative to sub-
populations or the total population. These fixation indices were
originally defined for biallelic genes, and later generalized tomulti-
allelic and multilocus settings by Nei (1973, 1977), Wright (1978),
Chakraborty (1993) and Nagylaki (1998a). In this paper we com-
pute predictions of FIS , FIT and the coefficient of gene differentia-
tion GST , which is the multiallelic version of FST .

We conclude with a discussion in Section 8, give mathematical
details and some further examples in a supplementarymaterial SM
(see Appendix A), and summarize the most important notation in
Table 1.

2. Model

Consider a diploid population evolving in discrete time t =

0, 1, 2, . . . . We will sometimes refer to t as a generation, although
our setup is more general and incorporates overlapping genera-
tions. The population consists of st subpopulations at time t , which
may represent geographic regions (demes), age classes or even sin-
gle individuals. The model is either monoecious or dioecious, and
in the latter case all individuals of a subpopulation must have the
same sex.

Let Nti be the local census size of subpopulation i at time t .
Each individual carries two copies of a portion of DNA that is small
enough to neglect recombinations. It is located at a specific point
that we refer to as a gene, so that subpopulation i has 2Nti gene
copies at time point t . Backward migration is specified in terms
of Bti,k, the fraction of genes of individuals in subpopulation i at
time t that originate from subpopulation k at time t −1. The corre-
sponding number 2NtiBti,k of genes from k is a non-negative inte-
ger. (Throughout the paper we use commas in order to distinguish
indices of different time points.) For some models and subpopula-
tions i, a local effective sizeNeti at time t can be specified in order to
quantify the amount of genetic drift within i if it had been isolated.
For some applications the model simplifies if Neti replaces Nti, but
for models with overlapping generations there is no natural defi-
nition of Neti when i represents an adult age class. For this reason
we use Nti rather than Neti as a generic parameter.

Three types of fertilization are possible, either the same individ-
ual passes on its two genes to the offspring, which is then a geneti-
cally identical copy of the parent (cloning), or one individual passes
on two genes to the offspring, drawn randomly with replacement
(selfing), or each of two distinct individuals randomly passes on
one of its two genes to the offspring (mating). When Bti,k > 0, we
let cti,kθti,k, (1−cti,k)θti,k and 1−θti,k be fractions of gametes of sub-
population i and time t that originate from k, that were reproduced
through cloning, selfing and mating, respectively. Notice that sur-
vival of an individual can be regarded as a special case of cloning,
where the parent has no more than one offspring—itself. The over-
all fraction of individuals produced through selfing or cloning in
subpopulation i at time t is

θti =

st
k=1

Bti,kθti,k. (1)

Among all 2
st

i=1 Nti gene copies that exist at time point t ,
consider two distinct ones. Let fti be the probability that they are
IBD when picked from the same individual of subpopulation i, and
ftij the probability that they are IBD when drawn from different
individuals of subpopulations i and j. Several definitions of IBD
are possible, but here we mean that the two genes originate from
the same ancestral gene of a founder generation, whether or not
any mutations have occurred since then. If follows that fti is the
inbreeding coefficient of individuals of subpopulation i and time
point t , whereas ftij is the kinship coefficient, also referred to as
the coefficient of consanguinity or coancestry of individuals from
i and j, see Chapter 3 of Crow and Kimura (1970). Inbreeding and
coancestry within subpopulations put a bound on the amount of
coancestry between subpopulations, in that

0 ≤ ftij ≤


2Nti − 2
2Nti

ftii +
1

2Nti
(fti + 1)

 
2Ntj − 2
2Ntj

ftjj +
1

2Ntj
(ftj + 1)


(2)

for all i ≠ j, see the SM for a proof.
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