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a b s t r a c t

When models of quantitative genetic variation are built from population genetic first principles, several
assumptions are often made. One of the most important assumptions is that traits are controlled by
many genes of small effect. This leads to a prediction of a Gaussian trait distribution in the population,
via the Central Limit Theorem. Since these biological assumptions are often unknown or untrue, we
characterized how finite numbers of loci or large mutational effects can impact the sampling distribution
of a quantitative trait. To do so, we developed a neutral coalescent-based framework, allowing us to
gain a detailed understanding of how number of loci and the underlying mutational model impacts the
distribution of a quantitative trait. Through both analytical theory and simulationwe found the normality
assumption was highly sensitive to the details of the mutational process, with the greatest discrepancies
arisingwhen thenumber of lociwas small or themutational kernelwasheavy-tailed. In particular, skewed
mutational effects will produce skewed trait distributions and fat-tailed mutational kernels result in
multimodal sampling distributions, even for traits controlled by a large number of loci. Since selection
models and robust neutral models may produce qualitatively similar sampling distributions, we advise
extra caution should be taken when interpreting model-based results for poorly understood systems of
quantitative traits.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Questions about the distribution of traits that vary continu-
ously in populations were critical in motivating early evolution-
ary biologists. The earliest studies of quantitative trait variation
relied on phenomenological models, because the underlying na-
ture of heritable variation was not yet well understood (Galton,
1883, 1889; Pearson, 1894, 1895). Despite the rediscovery of the
work of Mendel (1866), researchers studying continuous variation
in natural populations were initially skeptical that Mendel’s laws
could explain what they observed (Weldon, 1902; Pearson, 1904).
These views were reconciled when Fisher (1918) showed that the
observations of correlation and variation between phenotypes in
natural populations could be explained by a model in which many
genes made small contributions to the phenotype of an individual.

The insights of Fisher (1918) made it possible to build models
of quantitative trait evolution from population genetic first
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principles. Early work focused primarily on the interplay between
mutation and natural selection in the maintenance of quantitative
genetic variation in natural populations, while typically ignoring
the effects of genetic drift (Fisher, 1930; Haldane, 1954; Latter,
1960; Kimura, 1965).

However, genetic drift plays an important role in shaping
variation in natural populations.While earlierwork assumed that a
finite number of alleles control quantitative genetic variation (e.g.
Latter (1970)), Lande (1976) used the continuum-of-alleles model
proposed by Kimura (1965) to model the impact of genetic drift on
differentiation within and between populations. A key assumption
of Lande’s models is that the additive genetic variance in a trait
is constant over time. In fact, in finite populations the genetic
variance itself is random; at equilibrium, there are still stochastic
fluctuations around the deterministic value assumed by Lande,
even if none of the underlying genetic architecture changes (Bürger
and Lande, 1994).

Several later papers explored more detailed models to under-
stand how genetic variance changes through time due to the joint
effects of mutation and drift (e.g. Chakraborty and Nei (1982)).
Lynch and Hill (1986) undertook an extremely thorough analysis
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of the evolution of neutral quantitative traits. They analyzed the
moments (e.g. mean and variance) of trait distributions that arise
due to mutation and genetic drift and provided several quantities
that can be used to interpret variation within and between species
and analyze mutation accumulation experiments.

Much of this earlierwork hasmade several simplifying assump-
tions about the distribution of mutational effects and the genetic
architecture of the traits in question. For instance, Lynch and Hill
(1986), despite analyzing quite general models of dominance and
epistasis, ignored the impact of heavy tailed or skewedmutational
effects. While, in many cases, such properties of the mutational ef-
fect distribution are not expected to have an impact if a large num-
ber of genes determine the phenotype in question, it is unknown
what impact theymay havewhen only a small number of genes de-
termine the genetic architecture of the trait. Moreover, when mu-
tational effects display ‘‘power-law’’ or ‘‘fat-tailed’’ behavior, the
impact of the details of the mutational effects may persist even
in the so-called infinitesimal limit of a large number of loci with
small effects. Finally, mutation accumulation experiments have
produced skewed and/or leptokurtic samples of quantitative traits
(Mackay et al., 1992), which is a directmotivation to relax assump-
tions on the mutational effects distribution.

Such deviations that stem from the violations of commonmod-
eling assumptions have the potential to influence our understand-
ing of variation in natural populations. For instance, leptokurtic
trait distributions may be a signal of some kind of diversifying se-
lection (Kopp and Hermisson, 2006) but are also possible under
neutrality when the number of loci governing a trait is small. Sim-
ilarly, multimodal trait distributions may reflect some kind of un-
derlying selective process (Doebeli et al., 2007) butmay also be due
to rare mutations of large effect.

We have twomain goals in this work. Primarily, we want to as-
sess the impact of violations of common assumptions on properties
of the sampling distribution of a quantitative trait (e.g. variance,
kurtosis, modality). Secondly, we believe that the formalism that
we present here can be useful in a variety of situations in quantita-
tive trait evolution, particularly in the development of robust null
models for detecting selection atmicroevolutionary time scales. To
this end, we introduce a novel framework for computing sampling
distributions of quantitative traits. Our framework builds upon the
coalescent approach of Whitlock (1999), but allows us to recover
the full sampling distribution, instead of merely its moments.

First, we outline the biological model and explain how we can
compute quantities of interest using a formalism based on charac-
teristic functions. We then use this approach to compute the sam-
ple central moments. While much previous work focuses on only
the first two central moments (mean and variance), we are able
to compute arbitrarily high central moments, which are related to
properties such as skewness and kurtosis. By doing so, we are able
to determine the regime in which the details of the mutational ef-
fect distribution are visible in a sample from a natural population.
Additionally, we explore the convergence to the infinitesimal limit
and find that when ‘‘fat-tailed’’ effects are present, traditional the-
ory based on the assumption of normality can lead to misleading
predictions about phenotypic variation.

2. Model

The mechanistic model we construct has two components: a
coalescent process, and a geneticmutational process that acts upon
the controlling quantitative trait loci by sampling effect sizes from
amutational kernel. Together, these processes generate the values
of quantitative traits sampled from the study population while
explicitly modeling their shared genetic ancestry. Althoughwe opt
for simple model components during this exposition, the model

generally supports more realistic and complex extensions, such as
population structure and epistasis.

We assume that we sample n haploid individuals from a ran-
domly mating population of size N . Initially, we consider a trait
governed by a single locus and we will later extend the theory to
traits governed by multiple loci. Let µ be the mutation rate per
generation at the locus, and θ = 2Nµ be the coalescent-scaled
mutation rate. We model mutation as a process by which a new
mutant adds an independent and identically distributed random
effect to the ancestral state. Note that when the distribution of ran-
dom effects is continuous, this corresponds to the Kimura (1965)
continuum-of-alleles model. However, it is also possible for the
effect distribution to be discrete, similar to the discrete model of
Chakraborty andNei (1982).While thismodel does not capture the
impact of a biallelic locus with exactly two effects, the following
theory could easily be modified to analyze that case.

Fig. 1 shows one realization of both the coalescent and
mutational processes for a sample of size 5. Given the phenotype at
the root of the tree and the locations and effects of each mutation
on the tree, the phenotypes at the tips are determined by adding
mutant effects from the root to tip. To specify the root, we can
assume without loss of generality that the ancestral phenotype for
the entire population has a value 0 (this is similar to the common
assumption in quantitative genetics literature that the ancestral
state at each locus can be assigned a value of 0).

This mutational process can be described as a compound Pois-
son process (see also Khaitovich et al. (2005b); Chaix et al. (2008);
Landis et al. (2013) for compound Poisson processes in a phylo-
genetic context). To ensure that this paper is self contained, we
briefly review relevant facts about compound Poisson processes in
Appendix A.1.

In the following, we ignore the impact of non-genetic variation
and focus on the breeding value of individuals, i.e. the average
phenotype of an individual harboring a given set of mutations.

3. Results

3.1. Computing the characteristic function of a sample

In many analyses, the object of interest is the joint proba-
bility of the data. If we let X = (X1, X2, . . . , Xn) be the vec-
tor representing the values of the quantitative trait observed in a
sample of n individuals, we denote the joint probability of the data
as p(x1, x2, . . . , xn). Note that, in general, Xi and Xj are correlated
due to shared ancestry, and that p must be computed by integrat-
ing over all mutational histories consistent with the data. Hence,
computing p directly is extremely difficult.

Instead, we compute the characteristic function of X. For a
one-dimensional random variable, X , the characteristic function is
defined as E(eikX )where i is the imaginary unit, and k is a dummy
variable. Generalizing this definition to an n-dimensional random
variable, we are interested in computing

λn(k) = E(eik
TX)

= E(ei(k1X1+k2X2+···+knXn))

where k = (k1, k2, . . . , kn) is a vector of dummy variables. Like
a probability density function, the characteristic function of X
contains all the information about the distribution of X. Moreover,
computing moments of X is reduced to calculating derivatives
of the characteristic function, which will prove useful in the
following.

We calculate the characteristic function of X in two parts.
First, we compute a recursive formula for φn, the characteristic
function given that ancestral phenotype of the sample is equal to 0.
Then, we compute ρn, the characteristic function of the ancestral
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