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a b s t r a c t

Soft selective sweeps represent an important form of adaptation in which multiple haplotypes bearing
adaptive alleles rise to high frequency. Most statistical methods for detecting selective sweeps from ge-
netic polymorphism data, however, have focused on identifying hard selective sweeps in which a favored
allele appears on a single haplotypic background; these methods might be underpowered to detect soft
sweeps. Among exceptions is the set of haplotype homozygosity statistics introduced for the detection
of soft sweeps by Garud et al. (2015). These statistics, examining frequencies of multiple haplotypes in
relation to each other, includeH12, a statistic designed to identify both hard and soft selective sweeps, and
H2/H1, a statistic that conditional on highH12 values seeks to distinguish between hard and soft sweeps. A
challenge in the use of H2/H1 is that its range depends on the associated value of H12, so that equal H2/H1
valuesmight provide different levels of support for a soft sweepmodel at different values ofH12. Here, we
enhance the H12 and H2/H1 haplotype homozygosity statistics for selective sweep detection by deriving
the upper bound on H2/H1 as a function of H12, thereby generating a statistic that normalizes H2/H1 to
lie between 0 and 1. Through a reanalysis of resequencing data from inbred lines of Drosophila, we show
that the enhanced statistic both strengthens interpretations obtainedwith the unnormalized statistic and
leads to empirical insights that are less readily apparent without the normalization.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A selective sweep, the process whereby beneficial mutations at
a locus that contribute to the fitness of an organism rise in fre-
quency to become prevalent in a population, can occur through
two main mechanisms that leave distinct genomic signatures
(Pritchard et al., 2010; Cutter and Payseur, 2013; Messer and
Petrov, 2013). A relatively new adaptive allele can proliferate so
that the single haplotype on which it has occurred reaches a high
frequency, resulting in a signature of a ‘‘hard’’ selective sweep
(Maynard Smith and Haigh, 1974; Kaplan et al., 1989; Kim and
Stephan, 2002). Alternatively, a mutation that arises de novo mul-
tiple times or exists as standing genetic variation on several hap-
lotype backgrounds before the onset of positive selection can
increase in frequency; in these cases, multiple favored haplotypes
have relatively high frequencies, generating a signature of a ‘‘soft’’
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selective sweep (Hermisson and Pennings, 2005; Przeworski et al.,
2005; Pennings and Hermisson, 2006a). Soft sweeps can provide
an effective mechanism for natural selection and might explain a
sizeable fraction of selective events in many systems (Orr and Be-
tancourt, 2001; Innan and Kim, 2004; Pritchard et al., 2010;Messer
and Petrov, 2013).

Most statistical methods that have been designed to detect
selective sweeps frompatterns of genetic polymorphism search for
patterns expected under a hard-sweepmodel, such as the presence
of a single commonhaplotype (Hudson et al., 1994), high haplotype
homozygosity (Depaulis and Veuille, 1998; Sabeti et al., 2002;
Voight et al., 2006), high-frequency derived variants and related
features of site-frequency spectra (Tajima, 1989; Braverman et al.,
1995; Fay and Wu, 2000; Nielsen et al., 2005), or local loss of
variation near a putative selected site (Maynard Smith and Haigh,
1974; Begun and Aquadro, 1992; Kim and Stephan, 2002). Many
methods that search for patterns expected with hard sweeps,
however, can be less well suited to the problem of identifying soft
sweeps (Pennings and Hermisson, 2006b; Teshima et al., 2006;
Cutter and Payseur, 2013). Therefore, current genomic scans for
selective sweeps might be limited in their ability to uncover an
important class of adaptive events.
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Recently, it has been shown that statistics based on haplo-
type homozygosity can identify both hard and soft sweeps from
population-genomic data (Ferrer-Admetlla et al., 2014; Garud
et al., 2015). Garud et al. (2015) developed a haplotype homozy-
gosity statistic,H12, relying on the principle that in a soft sweep, the
most frequent haplotypemight not predominate in frequency, and
instead, multiple frequent haplotypes might be present. In terms
of frequencies pi ≥ 0 for i = 1, 2, 3, . . . with


∞

i=1 pi = 1 and
p1 ≥ p2 ≥ p3 ≥ · · ·, Garud et al. (2015) defined H12 as

H12 = (p1 + p2)2 +

∞
i=3

p2i . (1)

This statistic calculates homozygosity by combining the two
largest haplotype frequencies into a single value and then com-
puting a haplotype homozygosity. Garud et al. (2015) determined
thatH12 has reasonable power to detect both hard and soft sweeps,
applying the statistic to Drosophila population-genomic data and
identifying abundant signatures of natural selection.

To determine whether the genomic regions with the highest
values of H12 were compatible with either a hard-sweep or soft-
sweep pattern, Garud et al. (2015) examined a second statistic,
H2/H1, a ratio of a haplotype homozygosity H2 that excludes the
most frequent haplotype and a haplotype homozygosity H1 that
includes this haplotype:

H1 = p21 + p22 +

∞
i=3

p2i (2)

H2 = p22 +

∞
i=3

p2i . (3)

For high values of H12, hard sweeps are expected to produce
relatively low values of H2/H1 because they produce a single high-
frequency haplotype (very high p1, low p2). Soft sweeps, on the
other hand, produce multiple high-frequency haplotypes (high p1,
p2, and perhaps others), and are expected to produce higher values
of H2/H1.

Garud et al. (2015) found that this two-step process – identifi-
cation of regionswith highH12 followed by examination ofH2/H1 –
could both detect selective sweeps in general and distinguish hard
and soft sweeps. As we will show, however, a complication in the
approach is that the permissible range of H2/H1 varies with the
value of H12. Thus, the magnitude of H2/H1 that might be regarded
as indicative of a soft or hard sweep can depend on the associated
values of H12. This potential difference in interpretations for val-
ues ofH2/H1 as a function ofH12 can present a particular challenge
when comparing H2/H1 at multiple loci with a wide range of H12
values.

In a line of work separate from the use by Garud et al.
(2015) of homozygosity-based soft sweep statistics, Rosenberg and
Jakobsson (2008) and Reddy and Rosenberg (2012) analyzed the
properties of homozygosity statistics in relation to the frequency
of the most frequent allele, identifying upper and lower bounds on
homozygosity given the frequency of themost frequent allele. This
work, along with related work on other statistics (Long and Kittles,
2003; Hedrick, 2005; Jost, 2008; VanLiere and Rosenberg, 2008;
Maruki et al., 2012; Jakobsson et al., 2013), seeks to understand
mathematical bounds onpopulation-genetic statistics, so that their
application and interpretation can be suitably informed by the
mathematical constraints on their numerical values.

Here, to facilitate the interpretation of the statistics of Garud
et al. (2015) and to enhance comparisons among values of these
statistics at loci with different haplotype homozygosities, we use
a result from Rosenberg and Jakobsson (2008) to determine the
upper and lower bounds on H2/H1 as a function of H12. The upper

bound provides a basis for normalization of H2/H1 to produce
a statistic with the same range, from 0 to 1, irrespective of the
value of H12. Using the upper bound and the new normalized
statistic, we reexamine Drosophila data analyzed by Garud et al.
(2015), demonstrating that the upper bound, (H2/H1)max, and the
normalized statistic, (H2/H1)

′, enable improved insights regarding
soft selective sweeps on the basis of genetic polymorphism data.

2. Theory

Our goal is to determine themaximumofH2/H1 given the value
of H12, for 0 < H12 ≤ 1. For convenience, we denote Z = H2/H1.
We denote the desired upper bound by Zmax.

For generality in our description, we consider ‘‘alleles’’ at
a locus. These distinct ‘‘alleles’’ can be viewed as representing
distinct haplotypes at a specific location in the genome; the
assumption is that a set of distinct genetic types is considered,
representing perhaps distinct haplotypes or distinct alleles in the
traditional sense, and the sum of the frequencies of the types is 1.

We sort alleles in descending order of frequency, so that p1 > 0
and p1 ≥ p2 ≥ p3 ≥ · · · ≥ 0. The number of alleles is left un-
specified, and it can be arbitrarily large; thus,


∞

i=1 pi = 1. For
our mathematical analysis, we consider parametric allele frequen-
cies; that is, the pi are treated as known frequencies in a population
rather than values estimated from samples. The mathematical set-
ting follows Rosenberg and Jakobsson (2008).

We let M = p1 + p2. Because p1 > 0, M , H12, and H1 are all
strictly positive. By analogy with H1 and H2, denote H3 =


∞

i=3 p
2
i .

Thus, by Eq. (1),

H12 = M2
+ H3. (4)

2.1. The upper bound on H2/H1 given H12

We proceed in two main steps. First, for fixed H12 and fixed
M , we determine the maximum of Z as a function of p1. Next,
we identify the value of M that maximizes Z . This pair of steps
constructs the set of allele frequencies {pi}∞i=1 that generates the
maximal Z at fixed H12. A graphical overview of the argument
appears in Fig. 1.

Maximizing Z for fixedH12 and fixedM . BecauseH2 = p22+H3
and p2 = M − p1, H2 can be rewritten

H2 = (M − p1)2 + H3. (5)
Note that by Eq. (4), for fixed H12 and fixed M , H3 is constant.
Because M = p1 + p2, p1 ≥ p2, and p1 > 0, it follows that M/2 ≤

p1 ≤ M . Treated as a function of p1, on the interval [M/2,M],
(M − p1)2 + H3 is decreasing.

Using Eq. (5), Z = H2/H1 can be written as

Z =
(M − p1)2 + H3

p21 + (M − p1)2 + H3

=
1

p21/[(M − p1)2 + H3] + 1
. (6)

In Eq. (6), for fixed H12 and fixedM , p21 is increasing in p1 and (M −

p1)2 +H3 is decreasing. The ratio p21/[(M − p1)2 +H3] is therefore
increasing in p1, so that the entire expression for Z decreases
with p1. It is therefore maximized when p1 is minimized—in other
words, when p1 = p2 = M/2. The maximal Z for fixed H12 and
fixedM is

Z =
4H12 − 3M2

4H12 − 2M2
. (7)

It remains to maximize Z by finding the value of M that max-
imizes Eq. (7) for fixed H12. By rewriting Eq. (7) as Z = 1 − M2/
(4H12 − 2M2), it can be seen that for fixed H12, asM increases,M2
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