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h i g h l i g h t s

• We use a probabilistic approach to derive the probability of improvement in Fisher’s geometric model of adaptation.
• Our approach provides an alternative interpretation of the main result of the model in terms of the model’s parameters.
• This probabilistic approach can be used to solve additional problems in Fisher’s geometric model.
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a b s t r a c t

Fisher developed his geometric model to support the micro-mutationalism hypothesis which claims that
small mutations are more likely to be beneficial and therefore to contribute to evolution and adaptation.
While others have provided a general solution to the model using geometric approaches, we derive an
equivalent general solution using a probabilistic approach. Our approach to Fisher’s geometric model
provides alternative intuition and interpretation of the solution in terms of the model’s parameters:
for mutation to improve a phenotype, its relative beneficial effect must be larger than the ratio of its
total effect and twice the difference between the current phenotype and the optimal one. Our approach
provides new insight into this classical model of adaptive evolution.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fisher’s geometricmodel (FGM) is awidely usedmodel of adap-
tive evolution in which selection and mutation act on a combina-
tion of quantitative traits. Each trait has an optimal value, and the
fitness of trait combinations is a decreasing function of the distance
to the optimal trait combination. Themodel was originally used by
Fisher to calculate the probability that a pleiotropicmutation – one
that affects multiple traits – leads to an improved phenotype. In
support of the micro-mutationalism hypothesis, Fisher found that
small mutations aremore likely to be beneficial and therefore con-
tribute to adaptation and evolution (Fisher, 1930, p. 40; Waxman
and Welch, 2005).

FGM is very relevant to both theoretical and experimental
research in evolutionary biology. FGM has been used to infer
distributions of fitness effects and fitness landscapes (Blanquart
et al., 2014; Hietpas et al., 2013; MacLean et al., 2010; Melnyk
and Kassen, 2011; Orr, 1998; Sousa et al., 2012; Trindade et al.,
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2012; Weinreich and Knies, 2013). Perfeito et al. (2014) followed
the adaptation of 23 lines of E. coli and used Approximate Bayesian
Computation to fit the data to the parameters of FGM, including the
genomicmutation rate, number of traits, and themean phenotypic
effect of mutations. Bank et al. (Bank et al., 2014) estimated the
distribution of fitness effects of 560 point mutations in Hsp90 in
Saccharomyces cerevisiae in six environments. Their results agree
with predictions of the FGM. FGM was also used to test the micro-
mutationalismhypothesis (Burch andChao, 1999) and for analyzing
evolutionary dynamics with simulations (Matuszewski et al.,
2014; Venkataram et al., 2013). It has been extended to include
fixation probabilities, fitness functions, and epistasis (Martin and
Lenormand, 2008, 2006; Waxman, 2006). Finally, a recent article
by Martin (2014) provides a biological justification for FGM by
demonstrating its emergence in complex phenotypic networks.

Previous derivations of the probability of improvement in FGM
used geometric approaches (Hartl and Taubes, 1996; Rice, 1990).
Here, we study this problemusing a probabilistic approach. Our re-
sult provides an alternative interpretation of how the probability
of improvement in the phenotype after occurrence of a mutation
is affected by the model’s parameters: the total effect of mutation
on phenotype, the number of affected traits, and the difference be-
tween the current phenotype and the optimal one. Additionally,

http://dx.doi.org/10.1016/j.tpb.2014.10.004
0040-5809/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.tpb.2014.10.004
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2014.10.004&domain=pdf
mailto:yoavram@post.tau.ac.il
http://dx.doi.org/10.1016/j.tpb.2014.10.004


2 Y. Ram, L. Hadany / Theoretical Population Biology 99 (2015) 1–6

Fig. 1. Two dimensional presentation of Fisher’s geometric model. The probability of
improvement is the probability that a mutation changes the current phenotype A
to a fitter phenotype that is closer to the optimum O. This probability is equal to the
fraction of circle α that is inside the circle β (the dashed arc), because the circle α

contains all the phenotypes that can be reached by a single mutation in A and the
circle β contains all the phenotypes that are as fit as A.

we demonstrate how our approach can be used to analyze other
properties of adaptation in FGM.

2. Model

We start by describing the general FGM. Then we review pre-
viously published results of the probability for improvement with
two and three traits, with an arbitrary number of traits, and with a
large number of traits.

2.1. Overview

In the following, we use the notation introduced by Fisher
(1930, p. 40). In FGM, a phenotype is defined by n traits and there-
fore can be described by a vector in an n-dimensional space (Rn).
Because we are interested in the effect of mutation on phenotype,
we define the Euclidean distance of the current phenotype from
the optimal phenotype to be d/2. Without loss of generality, we
assume that the optimal trait combination is O = (0, . . . , 0) and
the current phenotype is A = (d/2, 0, . . . , 0). The effect of muta-
tion on the current phenotype is given by a vector of magnitude r
and a random direction.

Fisher’s goal was to calculate the probability p that a mutation
is beneficial—that is, that a mutation creates a mutant phenotype
which is closer to the optimal phenotype than the current one.

2.2. Review of previous results

2.2.1. Two traits
Fig. 1 illustrates themodel for two traits.We denote the current

phenotype by A = (d/2, 0). Phenotypes that can be reached by a
single mutation of size r lie on circle α (centered at A with radius
r). Phenotypes that are as fit as A are marked by circle β (centered
at the origin with radius d/2). For a mutation to be beneficial, the
mutant phenotype must be in the part of the circle α that is inside
circle β (the dashed arc).

The two circles intersect at B = (x, y) and (x, −y) andwe define
C = (x, 0). x is calculated using the two circle equations:
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Therefore, the length of AC is r2/d. AB is the radius of circle α
with length r , and θ is the angle between CA and AB. Therefore,
cos θ = AC/AB = r/d. The probability of improvement p is the
ratio between the (dashed) arc of circle α that lies inside circle β
(with an angle 2θ ) and thewhole circle (with an angle 2π ). For this
two-dimensional case, the final formula for the beneficialmutation
probability is (Rice, 1990)
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1
π
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 r
d


,

where cos−1 x is arccos, the inverse function of cosine.

2.2.2. Three traits
With three traits, we have two spheres: sphere β , centered at

O = (0, 0, 0) with radius d/2, and sphere α centered at (d/2, 0, 0)
with radius r .

The intersection of these spheres defines a plane that cuts the
sphereα to create a spherical cap. The area of this spherical cap has
a simple formula, 2πrh, where h is the height of the cap (equivalent
to r − AC in Fig. 1). This height can be found by the same way as in
the two trait case: h = r(1 − r/d).

Because the entire area of the surface of sphere α is 4πr2, the
ratio between the area of the spherical cap and the whole sphere
is (Fisher, 1930, p. 40)
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2.2.3. Arbitrary number of traits
In the general case of n traits there are two n− 1 hyperspheres,

but the rest of the details are similar to the n = 2, 3 cases. Rice
(1990) presented a solution based on an argument similar to that
made in the three trait case on spherical caps:

pRn =
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This result was also derived by others (Hartl and Taubes, 1996;
Waxman and Welch, 2005). For n = 2 this becomes cos−1( r
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For n = 3, this becomes cos−1( r
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Kimura (1983, p. 137) presented a different formula (which is
equivalent, see below):

pKn =
1
2
I
1− r2

d2


n − 1
2

,
1
2


,

where Ix (a, b) is the regularized incomplete beta function. He did
not provide a derivation for this result.

2.2.4. Large number of traits
Fisher presented an asymptotic result for a large number of

traits (Fisher, 1930, p. 40), which is very elegant due to the use of
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