
Theoretical Population Biology 94 (2014) 1–9

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

The demography of a metapopulation in an environment changing in
time and space
François Blanquart ∗

Centre d’Ecologie Fonctionnelle et Evolutive, Unité Mixte de Recherche 5175, 1919 route de Mende, 34293 Montpellier Cedex 5, France
Université de Montpellier 2, Place Eugène Bataillon 34095 Montpellier Cedex 5, France

a r t i c l e i n f o

Article history:
Received 16 September 2013
Available online 18 March 2014

Keywords:
Spatial heterogeneity
Source–sink dynamics
Moran effect
Inflationary effect
Spatial correlation
Temporal correlation

a b s t r a c t

The persistence of populations living in heterogeneous environments crucially depends on the interaction
between changes of the environment in space and time, and theway individualsmove between locations.
Here an approximation for the multiplicative growth rate of a metapopulation is derived, as a function
of the properties of the spatial heterogeneity and temporal change in local habitat quality, and the
dispersal pattern. This analysis reveals that the growth rate depends on (i) the geometric mean of the
average growth rate in the metapopulation, (ii) whether individuals tend to be more numerous in high
quality demes and (iii) temporal fluctuations in the spatial distribution of individuals. The two latter
effects had been previously identified but mostly in simulation studies. Here I identify them in a unified
analytical framework which helps clarifying previous studies. This analysis reveals that the shape of
temporal variability interacts with the dispersal rate to determine the growth of themetapopulation, and
in particular that the effects of dispersal depend on the level of temporal correlation of the environment.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

Natural populations often experience heterogeneity in environ-
mental conditions, for example in temperature, chemical compo-
sition, moisture, or the biotic environment. Heterogeneity in the
environment causes the vital rates of populations to change both
in space and in time. Such variations have profound consequences
on the demography and evolution of populations. Understanding
what these consequences are is important in many contexts, for
example, pest control in cropmanagement (Levins, 1969),manage-
ment of antibiotic resistance in bacteria (Bourguet et al., 2013) or
conservation of endangered species. The probability of persistence
of a population depends on the interaction between the properties
of environmental variability (spatial and temporal correlations),
and the pattern of dispersal. These phenomena have been exten-
sively studied in empirical and theoretical studies.

One classical study showed that lynx population abundance in
Canada exhibits spatially correlated cyclic dynamics, which may
be driven by spatially correlated changes in resources (Moran,
1953) or by dispersal (Lande et al., 1999). Spatial correlations
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in abundance increase the probability of extinction (Heino et al.,
1997). This result has promptedmanymeasures of the spatial scale
of correlation in population abundance in the field (Koenig, 1998,
2001). Another major concept is that of ‘‘source–sink’’ dynamics
(Pulliam, 1988), whereby spatial variability in environmental
conditions creates an asymmetry between ‘‘source’’ populations,
which enjoy favorable conditions and have positive growth rates,
and ‘‘sink’’ populations, which experience bad conditions, have
negative growth rates, and can only be sustained by the influx
of migrant coming from source populations. Many studies have
sought to detect ‘‘source–sink’’ dynamics in wild populations
(Johnson, 2004; Ringsby et al., 2002; Runge et al., 2006; Sæther
et al., 1999; Schaub et al., 2006; Smith et al., 1996; Stacey and
Taper, 1992). Recently, a particular attention has been paid to
source–sink systems where the status of source or sink changes
through time for each deme (Gonzalez and Holt, 2002; Holt et al.,
2003; Jansen and Yoshimura, 1998; Roy et al., 2005; Schreiber,
2010). A striking result is that a metapopulation may persist in
a changing and heterogeneous environment thanks to dispersal
between patches, even if each patch individually is on average a
sink habitat. Last, much work has taken the shortcut of describing
patches of suitable habitat as either ‘‘empty’’ or ‘‘occupied’’, and
followed the dynamic of extinction and colonization of these
patches (‘‘metapopulation dynamics’’; Hanski, 1998; Levins, 1969).
This work has led to important insights into the demography of
populations in variable environments (e.g., Saccheri et al., 1998)

http://dx.doi.org/10.1016/j.tpb.2014.03.001
0040-5809/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.tpb.2014.03.001
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2014.03.001&domain=pdf
mailto:francois.blanquart@normalesup.org
http://dx.doi.org/10.1016/j.tpb.2014.03.001


2 F. Blanquart / Theoretical Population Biology 94 (2014) 1–9

or the evolution of dispersal (Hanski and Mononen, 2011), but
conceptual links with models with explicit demography are not
easy to draw (but see Engen and Sæther, 1998; Hanski and
Mononen, 2011; Sæther et al., 1999).

The focused research effort reviewed above has brought key in-
sights into the dynamics of populations in variable environments,
but also raised several questions. The very abundant literature can
be split into studies considering density independent growth on
one hand, and those considering density dependent growth and/or
multispecies models (e.g., predator–prey or host–parasite models)
on the other hand. For simplicity, the following review is focused
on density-independent populations—as we will see, even in this
simple scenario, many different concepts have been introduced to
understand population growth. First, although it seems well es-
tablished that spatial correlation in the environment impedes per-
sistence of the metapopulation, the impact of the properties of
temporal change has been less studied. Simulations suggest that
positive temporal correlation in the growth rates tends to enhance
persistence (called the ‘‘inflationary effect’’ or ‘‘growth–density co-
variance’’; Jansen and Yoshimura, 1998; Chesson, 2000; Schiegg,
2003; Roy et al., 2005). In these studies, the fluctuations in the envi-
ronment are random, autocorrelated, and it is not known whether
the ‘‘inflationary effect’’ holds for other shapes of environment
fluctuations (e.g., periodical fluctuations). More generally, explicit
analytical results characterizing how this effect depends on en-
vironmental variability and dispersal are lacking. Second, the ef-
fects of dispersal are many and seem to depend on the shape of
temporal variability. Indeed, studies which consider uncorrelated
random fluctuations in habitat quality (white noise) find that full
dispersal enhances persistence relative to no dispersal (Kuno,
1981; Metz et al., 1983; Venable and Brown, 1988, 1993). Other
studies with some level of temporal correlation in the environ-
ment find, on the contrary, that growth is maximal for an inter-
mediate rate of dispersal (Jansen and Yoshimura, 1998; Roy et al.,
2005; Schreiber, 2010). The diversity of assumptions of these stud-
ies and the lack of analytical results make it unclear what are the
phenomena behind these effects of dispersal. Dispersal has com-
plex effects, as it stabilizes local fluctuations in population abun-
dance (‘‘dispersal-induced stability’’), but at the same time tends
to synchronize population dynamics in space which would on the
contrary impair persistence (Abbott, 2011). In sum, the study of
demography in variable environments has generated a great pro-
fusion of concepts and identified many interesting phenomena.
Yet few analytical results exist encompassing all these phenomena
within a set of general principles governing the fate of a population
in a variable environment.

The small number of analytical studies combining spatial and
temporal heterogeneity is somewhat surprising as general prin-
ciples have been captured long ago for the case of a population
growing in a temporally changing but spatially homogeneous en-
vironment (Lewontin and Cohen, 1969, who introduced the idea
that population persistence depends on the geometric mean fit-
ness). Schreiber (2010) derived expressions for the growth rate
of a metapopulation when the population is almost ‘‘fully mixed’’
(full mixing occurs when all individuals of the metapopulation are
gathered in a common pool ofmigrants before being re-distributed
among all demes regardless of their origin). He found a general
expression for the growth rate, which revealed in particular that
temporal correlations increase the growth rate, while spatial cor-
relations decrease it. Here I set up a similar model to derive the
growth rate of a density-independent metapopulation in an en-
vironment variable in time and space. The present study extends
previous work in two ways: first, a general approximation for the
growth rate in any scenario of environmental variability and any
dispersal pattern is derived. This expression unifies a disparate
body of theoreticalwork by encapsulating all the above-mentioned
phenomena in a single analytical expression. Second, this new

approximation allows accurate prediction of the growth rate when
the dispersal pattern is not necessarily close to a ‘‘fully mixed’’
model, and in particular allows examining how the properties of
environmental variability (shape of the temporal change, temporal
correlation, spatial variability, etc.) and the rate of dispersal influ-
ence growth in these conditions.

1. The model

We describe a metapopulation where individuals are dis-
tributed across K demes. At each time step, the outcome of the
events of reproduction and survival is described by the local
growth rate ri,t and the rate of dispersal from population j to i is
represented by dj→i. From one time step to the next, thus, local
population size in deme i changes as:

Ni,t+1 = di→iNi,t ri,t +

K
j=1
j≠i

dj→irj,tNj,t (1)

with di→i +
K

j=1
j≠i

di→j = e. e is the probability of successful es-

tablishment and lies in the [0, 1] interval. If e = 1, dispersal is not
costly and the metapopulation size is not affected by dispersal.

Eq. (1) is a system of K linear equations with fluctuating
coefficients ri,t describing the spatial heterogeneity and the change
of the environment. In the following these coefficients ri,t will
be called the local growth rates, and they must not be confused
with the ‘‘growth rate’’, which refers to the growth rate of the
entire metapopulation. The total population size at time t as Nt =K

j=1 Nj,t . In suchmodel, themetapopulation grows exponentially,
and the aim of the following sections is to derive expressions for
its growth rate. To this end I define the fractional size of deme i
as wi,t =

Ni,t
Nt

and the spatial average of the local growth rates

weighted by local population sizes as r̄t =
K

j=1wj,t rj,t . The
expected growth rate of the metapopulation from time 0 to t is
given by (Appendix A):

λt = E

1
t
log


Nt

N0


= log[e] + E


1
t

t−1
τ=0

log[r̄τ ]


. (2)

In the scenarios of environmental variability that we will examine,
for large t , λt converges to a limit λ which is independent of
time. This is not always necessarily the case: for example, if the
environment changed in a directional fashion, the growth rate
would always depend on t . The limit λ is the Lyapunov exponent
of the process defined in Eq. (1) (Metz et al., 1983, 1992). λ
depends on the average of the local growth rates (i) over all demes
weighted by their local population size (the bar of r̄τ ), (ii) over
time ( 1t

t−1
τ=0) and (iii) over the realizations of the random process

determining the ri,t (E[ ]). In this model, λ determines population
persistence: if λ < 0, the population goes extinct; if λ > 0, the
population grows exponentially with rate λ. Population growth is
density-independent, but the model is also a good approximation
of density-dependent population growth when populations are
small. In the case of negative density dependence, positive growth
rate at the limit of small population ensures the population will
converge to a positive solution (Benaïm and Schreiber, 2009). In
the presence of demographic stochasticity (whichwe do notmodel
here), λ > 0 is a necessary condition for the population to persist,
but not a sufficient one, because demographic stochasticity may
cause small populations to get extinct by chance even if λ > 0.

2. General expression for the growth rate of a metapopulation
in a variable environment

Finding general expressions for the growth rate λt is not possi-
ble in the general case. To go further, following Metz et al. (1983),
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