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a b s t r a c t

Sample n individuals uniformly at random from a population, and then sample m individuals uniformly
at random from the sample. Consider the most recent common ancestor (MRCA) of the subsample of m
individuals. Let the subsample MRCA have j descendants in the sample (m 6 j 6 n). Under a Moran
or coalescent model (and therefore under many other models), the probability that j = n is known.
In this case, the subsample MRCA is an ancestor of every sampled individual, and the subsample and
sample MRCAs are identical. The probability that j = m is also known. In this case, the subsample
MRCA is an ancestor of no sampled individual outside the subsample. This article derives the complete
distribution of j, enabling inferences from the corresponding p-value. The text presents hypothetical
statistical applications pertinent to taxonomy (the gene flow between Neanderthals and anatomically
modern humans) and medicine (the association of genetic markers with disease).

© 2013 The Author. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Consider the following hypothetical situation. Within a sample
of n individuals, a subsample ofm individuals share a morphologi-
cal character. Upon genetic analysis, them individuals share some
genetic characters with a further j − m ≥ 0 individuals within
the sample. One might desire a p-value to test whether j − m
is ‘‘too small’’, i.e., to test whether the concentration of the mor-
phological character among individuals with the genetic charac-
ters is too excessive to reflect chance alone. This article derives a
p-value by giving the sampling distribution of j. Depending on its
context, a small p-value might suggest among other possibilities,
e.g., that gene flow between the subpopulations represented by
the subsample and its complement within the sample is not free
(i.e., that themathematical assumptions underlying the coalescent
are violated), or that the genetic characters have a causal influ-
ence on themorphological character. The Discussion demonstrates
how the p-value might be relevant to rejecting the hypothesis of
free gene flow between Neanderthals and anatomically modern
humans (Krings et al., 1997; Nordborg, 1998; Krings et al., 2000)
or to associating a genetic disease or phenotype with a set of DNA
markers necessary but not sufficient for it.

To determine the distribution corresponding to the p-value,
consider Kingman’s coalescent (Kingman, 1982a,b), where n
individuals are sampled uniformly at random at time t0 from a
large population. Kingman examined a haploid population, but
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coalescent models can also apply to sexual populations (Nordborg,
2004; Pollak, 2004; Wakeley et al., 2012). A pure death process
Dt (t ≥ 0) counts the ancestors of the sample at prior times t0 − t .
The process Dt transitions through the states n → n−1 → · · · →

2 → 1, with the state Dt = k (k = 2, . . . , n) having a sojourn time
τk exponentially distributed with parameter dk =

1
2k (k − 1), and

with the state Dt = 1 absorbing.
The sample ancestry can be described using En, the set of all

equivalence relations on the n individuals. Consider the Markov
chain Rn → Rn−1 → · · · → R2 → R1, whose state-space
is En, where Rk corresponds to having Dt = k ancestors (k =

n, n − 1, . . . , 1). The variate Rk partitions the n individuals into
k equivalence classes, each equivalence class corresponding to an
ancestor and containing the ancestor’s descendants at time t0.
Define the identity relation ∆ = {(i, i) : i = 1, 2, . . . , n} and the
trivial relation Θ = {(i, j) : i, j = 1, 2, . . . , n}. Given ξ, η ∈ En,
let ξ ≺ η denote that η can be obtained from ξ by combining two
equivalence classes in ξ , and in fact, ∆ = Rn ≺ Rn−1 ≺ · · · ≺

R2 ≺ R1 = Θ . The transition probabilities of the Markov chain
{Rk} are

P {Rk−1 = η|Rk = ξ} =


2/ [k (k − 1)] if ξ ≺ η
0 otherwise. (1)

Kingman shows that if ξ contains k equivalence classes,

P {Rk = ξ} =
(n − k)!k! (k − 1)!

n! (n − 1)!
λ1!λ2! · · · λk!, (2)
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where λ1, λ2, . . . , λk are the sizes of the equivalence classes of ξ .
Eq. (1) implies Eq. (2), so Eq. (2) holds for any model imposing
Eq. (1) on the ancestry of a sample, in particular the Moran model
(Moran, 1962; Kimura and Crow, 1964;Watterson, 1984; Donnelly
and Tavare, 1986a,b) (without mutation), or indeed any model of
ancestry approximating a coalescent process closely enough.

Now, draw a subsample of m individuals uniformly at random
from the sample of n individuals. The subsample has a most recent
common ancestor (MRCA). For 1 ≤ m ≤ j ≤ n, let pn,m;j denote the
probability that the subsample MRCA has j descendants within the
sample. For j = n, e.g., the subsample has the same MRCA as the
sample. From Theorem 2 in Saunders et al. (1984) with l1 = l2 = 2
(or Example 1 in Saunders et al. (1984)),

pn,m;n =
m − 1
m + 1

n + 1
n − 1

. (3)

(See also p. 77 in Hein et al. (2005).)
In a standard notation (Graham et al., 1994), let nm

=

n (n − 1) · · · (n − m + 1) denote the falling factorial for 1 ≤ m ≤

n, with n0
= 1. In addition to Eq. (3), we have the trivial boundary

cases pn,1;1 = pn,n;n = 1, so for m < n, consider the recursion

pn,m;m =
m (m − 1)
n (n − 1)

pn−1,m−1;m−1

+
(n − m) (n − m − 1)

n (n − 1)
pn−1,m;m, (4)

which conditions on R2, the two terms corresponding to co-
alescences: (1) within the subsample (probability m (m − 1) /
[n (n − 1)]); and (2) outside of the subsample (probability
(n − m) (n − m − 1) / [n (n − 1)]). Eq. (4) can provide an induc-
tive proof of the formula

pn,m;m =
2 (m − 1)!

(m + 1) (n − 1)m−1 (5)

from (Wiuf and Donnelly, 1999). (See also, e.g., p. 84 in Hein et al.
(2005) and Eq. (1) in Rosenberg (2007).)

If j = m, Eq. (5) provides a p-value pn,m;m, to test whether under
the assumptions underlying the coalescent, subsample ancestries
are likely to coalesce before coalescing with the remainder of
the sample (see, e.g., p. 86 in Hein et al. (2005) for examples
concerning Neanderthal ancestry (Nordborg, 1998 and Harris
and Hey, 1999)). If j > m, then the relevant (left-sided) p-
value becomes a sum pn,m;j,• =

j
i=m pn,m;i. With the motivating

applications mentioned in the Introduction, Theorem 1 in the
Results section extends the analytic formula for pn,m;j from j = m
and j = n to 1 ≤ m ≤ j ≤ n.

2. Theory

Theorem 1. Let 1 ≤ m ≤ n, and consider a sample whose ancestry
satisfies Eq. (1). Under the set-up described above, for m = 1,
definitions show that pn,m;j equals 1 if j = 1 and 0 otherwise. For
m > 1,

pn,m;j =


m − 1
m + 1

2 (j − 2)m−2

(n − 1)m−1 for 2 ≤ m ≤ j < n

m − 1
m + 1

n + 1
n − 1

for 2 ≤ m ≤ j = n,

(6)

with pn,m;j = 0 unless 2 ≤ m ≤ j ≤ n.

Remark. Eq. (6) reduces to Eq. (5) in the case j = m, as it
should.

Proof. Note the following identity for 1 ≤ a ≤ b:

a
b

i=a

(i − 1)a−1
=

b
i=a

[i − (i − a)] (i − 1)a−1

=

b
i=a


ia − (i − 1)a


= ba (7)

where the second equality follows because i (i − 1)a−1
= ia and

(i − 1)a−1 (i − a)=(i − 1)a. Thus,
n

j=m pn,m;j = 1 for 2 ≤ m ≤ n:

m − 1
m + 1


n + 1
n − 1

+

n−1
j=m

2 (j − 2)m−2

(n − 1)m−1



=
m − 1
m + 1


n + 1
n − 1

+
2

(n − 1)m−1

n−1
j=m

(j − 2)m−2



=
m − 1
m + 1


n + 1
n − 1

+
2

(n − 1)m−1

(n − 2)m−1

m − 1


=

m − 1
m + 1


n + 1
n − 1

+
2

n − 1
n − m
m − 1


= 1, (8)

where the second equality follows from Eq. (7).
For m = 1, definitions yield pn,1;1 = 1, and for m > 1, pn,m;j =

0 unless m ≤ j ≤ n. To set up an inductive proof of Theorem 1
for the cases in Eq. (6), let Pi be the proposition that Theorem 1
holds for every 2 ≤ m ≤ j ≤ n ≤ i. To start the induction, P2
is true, because by definition p2,2;2 = 1, agreeing with Eq. (6) for
2 ≤ m ≤ j = n ≤ 2 (the other case 2 ≤ m ≤ j < n ≤ 2 being
vacuous).

For the inductive step, assume Pn−1 holds for some fixed n ≥

3. From Eq. (2) for k = 2, the probability that one of the two
equivalence classes ofR2 contains allm subsample individuals and
has a total of i elements is

(n − 2)!2!1!
n! (n − 1)!

i! (n − i)!


(n − m)!

(n − i)! (i − m)!
=

2
n − 1

im

nm
, (9)

because there are (n − m)!/ [(n − i)! (i − m)!] equally probable
ways of forming the two equivalence classes of R2 by placing the
m subsample individuals into an equivalence class of i elements.

As usual, let empty sums equal 0. To check thatPn follows from
Pn−1, we check first that Eq. (6) holds for 2 ≤ m ≤ j < n, then
conclude from

n
j=m pn,m;j = 1 and Eq. (8) that Eq. (6) also holds

for 2 ≤ m ≤ j = n. For 2 ≤ m ≤ j < n, then,

pn,m;j =
2

n − 1

n−1
i=j

im

nm
pi,m;j

=
2

n − 1


jm

nm

m − 1
m + 1

j + 1
j − 1

+

n−1
i=j+1

im

nm

m − 1
m + 1

2 (j − 2)m−2

(i − 1)m−1



=
m − 1
m + 1

2
n − 1

1
nm


jm

j + 1
j − 1

+ 2 (j − 2)m−2
n−1
i=j+1

i



=
m − 1
m + 1

2
n − 1

1
nm

×


jm

j + 1
j − 1

+ 2 (j − 2)m−2 1
2


n2

− (j + 1)2


=
m − 1
m + 1

2 (j − 2)m−2

(n − 1)m−1 , (10)

where the first equality is justified as follows. One of the two
equivalence classes of R2 must contain all m individuals from
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