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HIGHLIGHTS

o We give a fully general sensitivity formula for interacting structured populations.
o We apply the formula to a model of ontogenetic niche shift.
o The formula works reasonably even for large perturbations and far from equilibrium.
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Sensitivity analysis of structured populations is a useful tool in population ecology. Historically,
methodological development of sensitivity analysis has focused on the sensitivity of eigenvalues in linear
matrix models, and on single populations. More recently there have been extensions to the sensitivity
of nonlinear models, and to communities of interacting populations. Here we derive a fully general
mathematical expression for the sensitivity of equilibrium abundances in communities of interacting
structured populations. Our method yields the response of an arbitrary function of the stage class
abundances to perturbations of any model parameters. As a demonstration, we apply this sensitivity
analysis to a two-species model of ontogenetic niche shift where each species has two stage classes,
juveniles and adults. In the context of this model, we demonstrate that our theory is quite robust to
violating two of its technical assumptions: the assumption that the community is at a point equilibrium
and the assumption of infinitesimally small parameter perturbations. Our results on the sensitivity of a
community are also interpreted in a niche theoretical context: we determine how the niche of a structured
population is composed of the niches of the individual states, and how the sensitivity of the community
depends on niche segregation.
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1. Introduction

Sensitivity analysis has been a long-standing and distinguished
tool in population ecology. It asks the question what is the lin-
ear response of some variable of interest to a change in some pa-
rameter. Though the concept is very general, arguably the most
successful branch of applications came from linear structured pop-
ulation models (Caswell, 2001, chapter 9). Sensitivity analysis of
this deceptively simple class of models has led to deep ecological
and evolutionary insights into the theory of senescence (Hamilton,
1966; Gleeson, 1984; Caswell, 2011), life history tradeoffs (Tem-
pleton, 1980; Caswell, 1982, 1984), classification of plant strategies
(Silvertown et al., 1992; Franco and Silvertown, 1996), the analy-
sis of transient population dynamics (Caswell, 2007), and the as-
sessment of extinction risk and suggestion of viable conservation
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measures (Crouse et al., 1987; Silvertown et al., 1993; Noon and
McKelvey, 1996; Forsman et al., 1996; Seamans et al., 1999; Fuji-
wara and Caswell, 2001; Hunter et al., 2010).

Indeed, sensitivity analysis of linear structured population
models has been generating so many interesting results that, iron-
ically, extensions of this methodology to other types of models
have been somewhat lagging behind. Nevertheless, sensitivity
analysis of density-dependent structured population models with
fixed point equilibria is now available (Takada and Nakajima, 1992,
1998; Grant and Benton, 2000, 2003; Caswell, 2008). Behind this
extension lies an important insight. Although calculating the sen-
sitivity of any quantity to any parameter is straightforward in
linear models, it has usually been the leading eigenvalue’s sensi-
tivity that has received most attention. The leading eigenvalue is a
measure of the long-term growth rate of the population. However,
in density-dependent models, populations eventually reach a sta-
tionary state where there is no long-term growth. Therefore, eigen-
value sensitivities are not very informative (but see Caswell et al.,
2004). Instead, it is the sensitivity of the stationary state itself that
is of great interest: when perturbing a parameter, how much is the
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fixed point expected to shift? Caswell (2008) provides a completely
general sensitivity formula for fixed points in density-dependent
structured population models. Moreover, by extension, this result
may also be applied to periodic dynamics as well, since a discrete-
time periodic model can be converted into one with a fixed point
by repeated composition.

As we can see, sensitivity analysis for a fairly general class of
population models is now available. A natural next step is to extend
the methodology to communities of interacting populations, which
has the potential to address problems in diverse areas of ecology,
such as food web theory, coevolutionary processes, or questions
related to coexistence. As any community model with dynamic
feedbacks between the species will necessarily be density and/or
frequency dependent, once again the variable of interest is the
sensitivity of the stationary state to parameter perturbations. The
main motivation behind such an extension is that we want to
consider the response of a species to changes in its environment in
a way that takes into account its interactions with other species;
also, we want to know how the species interactions themselves
change as the environment changes. Potential questions that
might be answered using community-level sensitivity analysis
range from fundamental to more applied: what changes in the
environment, and what types of interaction webs, are conducive to
a trophic cascade? How sensitive can we expect the abundance of a
particular species of interest to be when the environment changes
in a way that is critical to one of its mutualists? Is the coexistence
of a particular set of competitors found in the field robust, i.e., is it
viable over a wide range of parameters, or is it overly sensitive to
the vagaries of the weather, leading to the inevitable loss of at least
some of the species?

For the simplest case of fixed points with unstructured popu-
lations, the extension of sensitivity analysis to communities has
been done by Levins (1974) and Meszéna et al. (2006). This has sub-
sequently been generalized to (unstructured) community dynam-
ics in random (Szilagyi and Meszéna, 2010) and periodic (Barabas
et al., 2012; Barabas and Ostling, 2013) environments, and -
partially - to structured community dynamics with fixed point
attractors (Szilagyi and Meszéna, 2009a,b). Potential practical ap-
plications aside, these studies revealed that the sensitivity analy-
sis of coexistence maintains a surprisingly deep connection with
some fundamental concepts in ecology, such as that of the ecologi-
cal niche (Grinnell, 1914; Elton, 1927; MacArthur and Levins, 1967;
Hutchinson, 1978; Leibold, 1995; Chesson, 2000b; Chase and Lei-
bold, 2003; Meszéna et al., 2006). Indeed, based on their results,
Meszéna et al. (2006); Szilagyi and Meszéna (2009a), and Barabas
et al. (2012) have proposed a niche concept that unifies functional,
temporal, and spatial modes of niche segregation (Christiansen and
Fenchel, 1977), keeping in the spirit of but generalizing the classi-
cal Hutchinsonian notion of the niche.

Here we wish to address the method for calculating sensitivities
in communities of interacting structured populations at fixed point
equilibria. As stated before, an important step in this direction
has already been made by Szilagyi and Meszéna (2009a). They
considered the sensitivity of the total population densities to
perturbing the projection matrix of each species by a scalar times
the identity matrix. This particular form of the perturbation was
sufficient to establish the general claim that limited similarity
of structured populations is necessary for their coexistence. Our
goal in this paper is to generalize their approach to arbitrary
perturbations, and to be able to calculate the sensitivity of not just
the total population densities, but that of an arbitrary function of
the stage class abundances.

In this article, after fixing notational conventions in Section 2,
we derive a general formula for the sensitivity of a fixed point
describing coexistence of interacting structured populations in
Section 3. The formula can handle generic perturbations of any

lower-level parameter [E, assuming the projection matrices depend
on E differentiably. It also allows for the sensitivity analysis of any
function of the abundance vectors. Finally, in Section 4, we apply
our findings to a two-species model of competing structured popu-
lations, where both species are assumed to undergo an ontogenetic
niche shift. After obtaining the sensitivities of the equilibrium den-
sities to all model parameters, we check what happens when relax-
ing the assumptions that the system is at its equilibrium, and that
the parameter perturbations are infinitesimal. As our results prove
sensitive to neither of these assumptions, we have good indication
that our framework is applicable even to systems not close to their
equilibria, and to perturbations that are not very small.

2. Model framework, notation, and normalization conventions

A general model of interacting structured populations reads, in
discrete time, as

ni(t+1) =AR.(y,...,05), E)ni(t) (=1...5). (1)

Here S is the total number of species in the community, n;(t)
is the population structure vector of the ith species at time t,
E represents the model’s parameters, A; is the projection matrix
of the ith species as a function of both density-dependent and
density-independent factors, and R, is the vector of regulating
variables (Levin, 1970; Meszéna et al., 2006). By definition, these
regulating factors mediate all interactions between individuals,
so that artificially keeping their values fixed would lead to the
density-independent increase or decrease of each population. They
may include resources, predators, pathogens, refuge availability, or
any other thing which provides a feedback between a population’s
growth rate and density. Also, though E may represent an arbitrary
number of model parameters, we will assume (unless noted
otherwise) that it stands for a single parameter of interest, while all
other parameters are kept constant. This will not lead to any loss
of generality, and will make the derivation simpler in Section 3.

As quantities may bear three distinct types of indices (namely:
species, structure, and regulation indices), we will use matrix no-
tation only for the population structure. For species and regulating
factors, we adopt index notation, where inner products and ma-
trix multiplication are indicated by summation over appropriate
indices. We reserve lowercase Latin subscripts (i, j, . . .) for species
indices and lowercase Greek subscripts (i, v, ...) for the regulat-
ing factors. Also, quantities bearing any regulation indices will be
denoted in calligraphic face (R, 4, . . .) to further distinguish them
from other quantities. Function notations like A;(R,(ny, ..., ng))
mean that the matrix A; depends on all components of the reg-
ulation vector with the generic component R, and &, in turn
depends on all the population structure vectors. As the regulat-
ing factors may have discrete and continuous indices at the same
time (the former might represent specialist predators or distinct
resources, while an example for the latter would be a resource con-
tinuum), the single index w is used to symbolically refer to all of
them at once. Correspondingly, the symbolic summation ) u will
refer to summation (integration) for all discrete (continuous) in-
dices of the regulating factors.

The identity matrix is denoted by the Kronecker symbol §j;,
equal to 1ifi = j and to O otherwise. When inverting matrices,
(M,j)fl will refer to the (i, j)th element of the inverse matrix (and
not to the reciprocal of the (i, j)th element): ), (M)~ Mij = §j.

For the population structure we employ matrix notation, where
vectors and matrices are denoted in boldface by lowercase and
uppercase letters, respectively. The number of distinct stage
classes for species i is s;. The inner product of two vectors a and
b is written simply as ab. Their outer product a ® b is by definition
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