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a b s t r a c t

In a population of individuals, whose mortality is governed by a Gompertz–Makeham hazard, we derive
closed-form solutions to the life-expectancy integral, corresponding to the cases of homogeneous and
gamma-heterogeneous populations, as well as in the presence/absence of the Makeham term. Derived
expressions contain special functions that aid constructing high-accuracy approximations, which can
be used to study the elasticity of life expectancy with respect to model parameters. Knowledge of
Gompertz–Makeham life expectancies aids constructing life-table exposures.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Parametric models of human mortality date back to Gompertz
(1825) and his insight that death rates at adult ages increase ex-
ponentially with age. Makeham (1860) added an age-independent
constant that, on the one hand, accounts for mortality that is not
related to aging and moreover, statistically speaking, introduces a
third parameter that improves the model fit.

In human populations, the overestimation of observed death
rates at ages 80+ by the Gompertz–Makeham (GM) curve in-
spired the study of models that account for unobserved hetero-
geneity (Beard, 1959), i.e. models in which the study population
is assumed to be stratified according to an unobserved measure of
individual susceptibility to death. Vaupel et al. (1979) introduced
a positive random variable Z , called frailty, that modulates indi-
vidual hazards. The resulting marginal distribution, a continuous
mixture for the baseline mortality distribution with respect to the
mixing frailty distribution, describes the process at the level of the
population. The simplest (in terms of frailty distribution choice)
model (Vaupel et al., 1979) that accurately captures observedmor-
tality dynamics at adult, old, and oldest-old ages (see, for example,
Missov and Finkelstein (2011) and Missov and Vaupel (2013)) is
the gamma-Gompertz–Makeham (Γ GM) model or its special case
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(when c = 0) the gamma-Gompertz (Γ G)model.Within its frame-
work individual frailty Z is described by a p.d.f.

π(z) =
λk

Γ (k)
zk−1 e−λz, k, λ > 0.

Frailty is considered to be fixed, i.e. one’s frailty is initialized at the
starting age of study by a value that remains the same through-
out one’s life. The force of mortality and the survival function of an
individual with frailty Z = z at age x is given, respectively, by

µ(x | z) = z aebx + c (1)

and

s(x | z) = exp

−z

a
b


ebx − 1


− cx


, (2)

where a, b > 0 are the Gompertz parameters and c ≥ 0 stands for
the level of age-independent extrinsic mortality (Kirkwood, 1985).
When c = 0, µ(x | z) follows a Gompertz curve. Otherwise
µ(x | z) has a GM shape.

The distribution of lifetimes in aΓ Gmixturemodel is described
by a survival function

s(x) =


∞

0
s(x | z) π(z)dz = e−cx


1 +

a
bλ

(ebx − 1)
−k

. (3)

As a result remaining life expectancy at age x is expressed by the
integral

e(x) =


∞

x
e−ct


1 +

a
bλ

(ebt − 1)
−k

dt. (4)
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In this article we focus on remaining life expectancy e(x) at age
x in four nestedmodels: a Gompertz or GM baseline with (gamma-
distributed) or without unobserved heterogeneity. In each of these
four settings we first derive analytical expressions e(x) and con-
struct high-accuracy approximations that do not include special
functions. Second, we study the elasticities of e(x) with respect to
all model parameters a, b, c, k, λ. Finally, we present problems, in
which knowledge of Gompertz–Makeham life-expectancy expres-
sions might be useful: (i) estimating age-specific exposures in life
tables; (ii) assessing the onset of senescent mortality and the start
of mortality deceleration.

2. Life expectancy: exact expressions and approximations

In this section we consider three special cases of (1) that cover
the four nested models of interest: (1) when Z has a degenerate
distribution concentrated at 1 and c = 0 (Gompertz), (2) when Z
has a degenerate distribution concentrated at 1 and c > 0 (GM),
and (3) when Z is gamma-distributed (Γ G when c = 0 and Γ GM
when c > 0). In each case we first derive analytical expressions
for (remaining) life expectancy and then construct high-accuracy
approximations based on the properties of the resulting special
functions.

2.1. Gompertz life expectancy and its approximation

In the Gompertz case, when the force of mortality is given as

µG(x) = aebx,

Missov and Lenart (2011) showed that the corresponding
remaining life expectancy at age x can be expressed by

eG(x) =
1
b
e

a
b E1

a
b
ebx


, (5)

where E1(z) =


∞

z
e−t

t dt denotes the exponential integral. As
shown by Abramowitz and Stegun (1965, 5.1.11)

E1(t) = −γ − ln t −

∞
n=1

(−1)n tn

n · n!
,

so if t = aebx/b is close to 0, then eG(x) can be approximated by

eG(x) ≈
1
b
e

a
b


−γ − ln

a
b


. (6)

2.2. GM life expectancy and its approximation

In the Gompertz–Makeham case, when the force of mortality is
given as

µGM(x) = aebx + c,

remaining life expectancy at age x equals

eGM(x) =
1
b
e

a
b

a
b

 c
b
Γ


−

c
b
,
a
b
ebx


, (7)

where Γ (s, z) =


∞

z ts−1e−tdt denotes the upper incomplete
gamma function (see B.1). Note that

E1(z) = lim
s→0


∞

z
ts−1 e−tdt = lim

s→0
Γ (s, z),

i.e. eG(x) is a degenerate form of eGM(x) when the Makeham term
equals zero.

If a is close to 0, life expectancy at birth eGM(0) can be approxi-
mated by

eGM(0) =
1
c

−

 a
b eγ−1

 c
b

c

1 −

c
b

 , (8)

where γ ≈ 0.57722 is the Euler–Mascheroni constant.
For parameter values corresponding to mortality patterns in

modern societies (0 < a
b ebx ≤ 1 and 0 < c

b ≤ 0.1), the incomplete
gamma function Γ


−

c
b ,

a
b e

bx

can be approximated by (see B.2)

Γ (s, z) =
1

s + s2
exp


(1 − γ )s + 0.3225s2


−

∞
k=0

(−1)k
zs+k

k!(s + k)
, (9)

where ζ (n) =


∞

k=1 k
−n is the Riemann zeta function and 0.3225

≈
ζ (2)−1

2 . The closer the z-argument of the upper incomplete
gamma function to 0, i.e. at younger ages, the fewer terms of

∞

k=0
(−1)k+1zs+k

k!(s+k) we need to use. To achieve a desired accuracy ε,
the number of termsm in the latter series to be taken into account
can be determined by

zs+m+1

(m + 1)!(s + m + 1)
≤ ε.

2.2.1. Example
Fitting a GM model by maximizing a Poisson likelihood (see

(C.1) in Appendix C) for the 2007 United States death counts (ages
30 and above), we get the following parameter estimates: â30 =

0.00046, b̂ = 0.094 and ĉ = 0.0007. If we want to measure
remaining life expectancy at age 30, by calculating ŝ = −0.0074
and ẑ = 0.0049 from the fitted parameters and setting the error of
approximation to the sum by ε = 0.001,

0.0049−0.0074+m+1

(m + 1)!(−0.0074 + m + 1)
≤ 0.001

solving this inequality for m gives m = 0.24. Rounding up to
the first integer, as only integers are allowed for k in (9), yields
m = 1. Similarly, when the Makeham term is close to zero, in
the exponential part of (9) the ζ (n)-term can be left out of the
approximation. In this case, the approximation error is 0.0014.
Adding the two errors together, by using

Γ (s, z) =
e(1−γ )s

s + s2
−

zs

s
+

zs+1

s + 1
(10)

instead of (9) approximates Γ (s, z) with an error of less than
0.0024.

To illustrate approximation quality, we calculate the exact
remaining life expectancy at age 30 for the United States (2007),
Japan and Germany (2009), as well as Sweden (2010) by (7), and
compare it to approximation (7) taking into account (10) (see
Table 1). Please note that the approximation error of (10) is inflated
by the multiplicative terms preceding the upper incomplete
gamma function in (7), leading to the error of not more than 0.02.

2.3. Γ GM life expectancy and its approximations

Suppose in a population the force of mortality and the survival
function for an individual with frailty Z = z are given by (1) and
(2), respectively. Then the remaining period life expectancy at age
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