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a b s t r a c t

We evaluate the effect of epistasis on genetically-based multivariate trait variation in haploid non-
recombining populations. In a univariate setting, past work has shown that epistasis reduces genetic
variance (additive plus epistatic) in a population experiencing stabilizing selection. Here we show that
in a multivariate setting, epistasis also reduces total genetic variation across the entire multivariate trait
in a population experiencing stabilizing selection. But, we also show that the pattern of variation across
the multivariate trait can be more even when epistasis occurs compared to when epistasis is absent, such
that some character combinations will have more genetic variance when epistasis occurs compared to
when epistasis is absent. In fact, a measure of generalized multivariate trait variation can be increased by
epistasis under weak to moderate stabilizing selection conditions, as well as neutral conditions. Likewise,
a measure of conditional evolvability can be increased by epistasis under weak to moderate stabilizing
selection and neutral conditions. We investigate the nature of epistasis assuming a multivariate-normal
model genetic effects and investigate the nature of epistasis underlying the biophysical properties of RNA.
Increasedmultivariate diversity occurs for populations that are infinite in size, as well as populations that
are finite in size. Our model of finite populations is explicitly genealogical and we link our findings about
the evenness of eigenvalues with epistasis to prior work on the genealogical mapping of epistatic effects.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

This paper addresses the question of whether epistasis in-
creases or decreases multivariate trait variation within a popula-
tion. The focus of analysis is non-recombining haploid populations.
Haploid species have been shown to diversify in their multivariate
phenotype in the lab (Rainey and Travisano, 1998) and there is ev-
idence that they can locally adapt in nature where locations differ
ecologically at the multivariate level (Belotte et al., 2003). Yet, a
theoretical understanding of the effect of epistasis on multivariate
trait variation in haploid species is lacking.

Multivariate trait variation is measured by a covariance matrix
(discrete characters) or a covariance function (function-valued
characters). In this paper, we focus on discrete traits. A common
approach to measure the amount of variation in a multivariate
trait is to perform a principal components analysis on the
genetic covariance matrix for the trait. A principal components
analysis involves finding the eigenvalues and eigenvectors of
a covariance matrix. This analysis decomposes variation into
independent directions (eigenvectors), where these eigenvectors
explain proportionally less and less of the variation. The variation
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explained by an eigenvector is its associated eigenvalue. The sum
of the eigenvalues and the degree of evenness of eigenvalues
indicates the amount of multivariate trait variation (e.g. Wagner,
1984; Kirkpatrick and Lofsvold, 1992;Mezey andHoule, 2005). The
sum of the eigenvalues is a measure of the total genetic variation
of a multivariate trait and the degree of evenness of eigenvalues is
a measure of how variation is distributed across the multivariate
trait. Evenness is the extent to which eigenvalues are the same. If
all of the eigenvalues are the same, then each principal component
has an equal amount of variation and all directions of variation
contribute equally to multivariate diversity.

For the univariate case, Hermisson et al. (2003) using a multi-
linear model of epistasis (Hansen andWagner, 2001), showed that
epistasis decreases genetic variance (additive plus epistatic) in a
diploid population undergoing stabilizing selection and assuming
linkage equilibrium. This result is suggestive that epistasis may
have a negative effect on genetic variation under stabilizing se-
lection. Here we determine whether epistasis reduces the genetic
variance of a multivariate trait under stabilizing selection in hap-
loid populations.

Hermisson et al. (2003) modeled a population that is infinite
in size and measured the statistical properties of the entire
population. Here we model both infinite and finite populations. In
the infinite population case we measure the statistical properties
of the entire population. In the finite population case, we study the
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statistical properties of a sample from this finite population. There
are three important differences between the infinite population
analysis and the finite population analysis that may affect
multivariate trait variation. First, the finite population experiences
random genetic drift, which reduces genetic variation. Since there
may be fewer polymorphic sites in the population at the time of
sampling, there may be a smaller number of additive and epistatic
effects that contribute to multivariate trait variation. Second,
random sampling further reduces the number of polymorphic
sites; thus reducing the number of additive and epistatic effects
that contribute to multivariate trait variation. Lastly, the finite
population has genealogical structure.

Genealogical structure has been shown to cause the genotypic
values of haplotypes to covary (Cavalli-Sforza and Piazza, 1975).
Griswold et al. (2007) showed that genealogical structure causes
the eigenvalues of multivariate traits to be less even, in principle
because of the correlation in genotypic values caused by shared
common ancestry. More recently, Griswold and Eisner (2012)
showed that epistasis reduces the correlation in genotypic values
caused by genealogical structure.

In this paper we make use of a generalized measure of multi-
variate diversity which is the determinant of a covariance matrix
(Wilks, 1932). The determinant of a covariance matrix is equal to
the product of its eigenvalues, which is directly related to the ge-
ometric mean of the eigenvalues of a covariance matrix. The de-
terminant and the geometric mean capture the evenness of a set
of random variables better than the arithmetic mean. For instance,
in signal processing, the geometric mean is used as a measure of
spectral flatness (Gray and Markel, 1974). The geometric mean of
the eigenvalues of G has been proposed as a measure of evolvabil-
ity and is a relatively good predictor of evolvability for low dimen-
sional traits, butmay be less so for high dimensional traits (Hansen
and Houle, 2008). Similarly, Cheverud et al. (1983) proposed and
Wagner (1984) studied the geometric mean of the eigenvalues of
the genetic or phenotypic correlation matrix as a measure of phe-
notypic integration. Generally, if epistasis increases multivariate
diversity, we expect the determinant of the covariance matrix to
be greater with epistasis compared to non-epistatic cases.

In addition to measuring the total genetic variation and gener-
alized variance of a multivariate trait, we also measure the condi-
tional evolvability of a population (Hansen and Houle, 2008). The
conditional evolvability of a population measures the constrained
response of a population to selection in the direction of a random
selection gradient, where constraint arises from pleiotropically as-
sociated characters or genetic polymorphisms in linkage disequi-
librium that are under purifying selection.

The outline of the paper is as follows. First we review the
univariate model of epistasis first introduced by Griswold and
Eisner (2012) and then outline the multivariate extension of
this model. Next we define the genetic covariance matrix of
a population. We then define the determinant of the genetic
covariance matrix as a generalized measure of multivariate
diversity and Hansen and Houle’s (2008) unconditional and
conditional measures of evolvability. Fourth, we present in
succession two models of evolution, an infinite population model
and a finite population model. We have chosen to consider both
infinite and finite populations because in the infinite population
there is no genealogical structure, whereas in the finite population
there is. For both models, we derive the expected genetic variance
of a trait experiencing no selection. These genetic variances are
used as a standard to parameterize the results and allows for direct
comparisons between results. Fifth, we describe the methods that
are used for two case studies. In one case study we assume naively
that genetic effects are multivariate and normally distributed. The
second case study involves using the biophysical properties of RNA
as a model system to understand the nature of genetic effects
andmultivariate trait evolution. Lastly we follow-up by presenting
results and discuss their context and implications.

2. Model components and measures of multivariate diversity

2.1. The univariate and multivariate models of epistasis

Here we extend the epistatic model introduced by Griswold
and Eisner (2012) to the multivariate case. The genotype of each
individual is haploid and each haplotype consists of L sites. For
simplicity, we assume a site can take on one of two states. The
model makes use of the concept of a reference haplotype (Hansen
andWagner, 2001). As in Griswold and Eisner (2012), the reference
haplotype is represented by the empty set {}. A haplotype that
differs in sequence from the reference haplotype is given by a
set of numbers that indicate the sites where a substitution occurs
relative to the reference haplotype. For instance, the haplotype
with substitutions at sites 1, 10 and 23, relative to the reference
haplotype is represented by the set {1, 10, 23}.

In the univariate case, the genotypic value of a haplotype
H (GH) is the sum of the set of its genetic effects (gi). The set
of genetic effects for haplotype H is g mapped to the power set
(W (H)) of H . For instance, the power set of the haplotype H =

{1, 10, 23} is

⟨⟨⟩ , ⟨1⟩ , ⟨10⟩ , ⟨23⟩ , ⟨1, 10⟩ , ⟨1, 23⟩ , ⟨10, 23⟩ , ⟨1, 10, 23⟩⟩ .

We distinguish a set representing a haplotype using ‘‘{’’ and ‘‘}’’
and the set of genetic effects using ‘‘⟨’’ and ‘‘⟩’’. A genetic effect
involving a single mutation is called ‘‘1st order’’, two mutations
‘‘2nd order’’, etc. Genetic effects that are 2nd order or higher are
epistatic because these effects indicate a deviation from the sum of
the genetic effects of each mutation by themselves, i.e. additivity.
The genotypic value of a haplotype H is then

GH =


i∈W (H)

gi. (1)

In the multivariate case, the genotypic value of a haplotype
H

G⃗H


is the sum of the set of its genetic effects


g⃗i

, where

g⃗i is a vector in which each element of the vector indicates the
genetic effect on a character thatmakes up amultivariate trait. The
genotypic value of a haplotype H is then

G⃗H =


i∈W (H)

g⃗i. (2)

The genetic effect g⃗⟨1⟩ is found by comparing the average phe-
notype of individuals with the reference haplotype to individuals
with a haplotype with a substitution at site 1, such that g⃗⟨1⟩ =

G⃗{1} − g⃗⟨⟩. Higher order effects are determined in a similar way, for
instance the effect g⃗⟨1,10⟩ is calculated as g⃗⟨1,10⟩ = G⃗{1,10} − g⃗⟨⟩ −

g⃗⟨1⟩ − g⃗⟨10⟩, where g⃗⟨10⟩ = G⃗{10} − g⃗⟨⟩. Note that ourmodel of epista-
sis, although similar to Hansen and Wagner (2001), in that we use
a reference haplotype, is different in that we do not assume their
multilinear form of genetic effects that involves a rescaling lower
order effects. Griswold and Eisner (2012) showedhow to transform
genetic effects from one reference haplotype to another; as part of
this analysis, they showed that the relative scaling of genetic effects
is preserved after a transformation from one reference to another
reference. In a genealogical context it is convenient and informa-
tive to use themost recent commonancestor (MRCA) of a sample as
the reference haplotype. Using theMRCA as the reference captures
the chronological accumulation of genetic effects through time.

2.2. Genetic covariance

The vectors of genotypic values of individuals determines the
genetic covariance of a population or sample. A genetic covariance
matrix is an K × K matrix, where K is the number of characters
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