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a b s t r a c t

We analyze a decoupled Moran model with haploid population size N , a biallelic locus under mutation
and drift with scaled forward and backward mutation rates θ1 = µ1N and θ0 = µ0N , and directional
selection with scaled strength γ = sN . With small scaled mutation rates θ0 and θ1, which is appropriate
for single nucleotide polymorphism data in highly recombining regions, we derive a simple approximate
equilibrium distribution for polymorphic alleles with a constant of proportionality. We also put forth an
even simplermodel, where all mutations originate frommonomorphic states. Using this model we derive
the sojourn times, conditional on the ancestral and fixed allele, and under equilibrium the distributions
of fixed and polymorphic alleles and fixation rates. Furthermore, we also derive the distribution of small
samples in the diffusion limit and provide convenient recurrence relations for calculating this distribution.
This enables us to give formulas analogous to the Ewens–Watterson estimator of θ for biased mutation
rates and selection. We apply this theory to a polymorphism dataset of fourfold degenerate sites in
Drosophila melanogaster.

© 2012 Elsevier Inc.

1. Introduction

In the limit of relatively high recombination and smallmutation
rates, each polymorphic site can be considered independent from
the rest of the genome. The distribution of allele frequencies at
a large number of such loci has been called the ‘‘allele-frequency
spectrum’’ or ‘‘site-frequency spectrum’’. In a classical manuscript,
Wright (1931) introduced a bi-allelic equilibrium model and
derived the equilibrium allele frequency distribution, up to a
constant of proportionality. Most recent treatments of similar
models, however, assume irreversible mutations (e.g., Sawyer and
Hartl, 1992; Hartl et al., 1994; Bustamante et al., 2001; Griffiths,
2003; Ewens, 2004; Evans et al., 2007). If mutation rates are
low and an outgroup is available to infer the ancestral state,
i.e., if states can be polarized, theory assuming irreversibility
allows inference of selection coefficients for polymorphic sites.
The quality of polarization and thus the quality of inference
under this model depends on the relative age of outgroups: if
outgroups are too closely related, polymorphism shared among
species is problematic; if outgroups are too distantly related,
double mutations may obscure patterns. Thus, for real data
analysis, a model allowing for back mutations may be better
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suited. Furthermore, if mutation parameters are to be estimated
in addition to the selection coefficient, an approach using
reversible mutations is necessary. Relatively recently, McVean
and Charlesworth (1999) reconnect to earlier work to derive
some statistics for the allele-frequency spectrum and provide
such an approach. Zeng and Charlesworth (2009, 2010) use the
Wright–Fisher model and forward simulations to infer parameters
using sequence data with a reversible mutation model (Shapiro
et al., 2007).

In population genetics theory, theWright–Fishermodel (Fisher,
1930; Wright, 1931) and later the Moran model (Moran, 1958)
have received the most attention among the explicit models
moving forwards in time. Many classic results were derived using
diffusion theory (Fisher, 1930; Wright, 1931; Kimura, 1955a,b). A
key parameter in population genetics is the population size N . In
the limit of largeN (usually a reasonable assumption), results from
different models and approaches converge. Diffusion theory can
be seen either as a model in its own right or as an approximation
to the explicit models in the limit of large N . Since we are
mostly interested in this limit, the mathematically most tractable
approach has been used, usually diffusion theory (Ewens, 2004).
Themodels and approaches discussed so farmove forward in time.
Since the 1980’s, the coalescent (Kingman, 1982), an approach that
looks backward in time, has been used to derive insights into the
distribution of small samples and into the genealogic tree behind
allelic distributions.
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Using a Moran model, Muirhead and Wakeley (2009) showed
that exact equilibrium solutions (up to a constant of proportional-
ity) can be obtained relatively easily for population genetic models
with mutation, drift, and frequency-dependent selection, both for
infinitely many and a finite number of K -alleles. Some of their re-
sults go beyond those readily available by diffusion theory. Baake
and Bialowons (2008) and Etheridge and Griffiths (2009) use a
Moran model where mutation, selection, and drift are decoupled.
With this model, Etheridge and Griffiths (2009) derive formulas
for mutation, drift, and genic selection and show that they con-
verge to the usual diffusion derived formulas in the limit of largeN .
Furthermore, boundary conditions are rather difficult to incorpo-
rate into diffusion theory (e.g., Evans et al., 2007). This argues for
multiple approaches to population genetics problems, challenging
the nearly exclusive focus on diffusion theory in forward models.

Starting from a decoupled Moran model (Baake and Bialowons,
2008; Etheridge and Griffiths, 2009), we concentrate particularly
on small scaled mutation rates (θ0 ≪ 1 and θ1 ≪ 1) with di-
rectional selection. We derive theory analogous to a model with-
out selection and apply it to a dataset of Drosophila melanogaster
introns and fourfold degenerate sites (Shapiro et al., 2007).

2. Small θ without selection

In this section, we re-derive known results for the case without
selection, i.e., the mutation-drift model. We show how results
derived for the infinite sitesmodel follow from the general case for
small scaled mutation rates, i.e., with θ0 and θ1 small and of order
θ ≪ 1.

Without selection, the mutation-drift equilibrium distribution
of a locus with two alleles is known to be beta-binomially
distributed in the diffusion limit and also in the decoupled Moran
model (Baake and Bialowons, 2008; Etheridge and Griffiths, 2009),
which we will introduce in more detail below. The probability of
finding y = i copies of allele one in a small sample of size n, with
0 < i < n, is:

Pr(y = i | n, θ0, θ1) =
n!

(θ0 + θ1)n

(θ0)n−i

(n − i)!
(θ1)i

i!
, (1)

where (a)i is the rising factorial or Pochhammer function: (a)i =

a(a + 1)(a + 2) · · · (a + i − 1) and (a)0 = 1. For small θ , we
have (θ)i = θ(i − 1)! + O(θ2). Therefore, formula (1) becomes
for 0 < i < n:
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Here, θ0θ1/(θ0 + θ1) serves as an approximate constant of
proportionality. For y = 0 and y = n, we have Pr(y = 0 |

n, θ0, θ1) = θ0/(θ0 + θ1) + O(θ2) and Pr(y = n | n, θ0, θ1) ≈

θ1/(θ0 + θ1) + O(θ2), respectively. For a sample of L loci, the
expectation of the sum of all polymorphic loci then is to first order
in θ :
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This recapitulates formula (17) in RoyChoudhury and Wakeley
(2010). It can be rearranged to give amethodofmoments estimator
of polymorphism in a sample that extends the Ewens–Watterson
estimator of molecular variation θ̂w (Ewens, 1974; Watterson,
1975) to biased mutation rates. If the mutation rates are balanced,
i.e., θ0 = θ1 = θ , formula (3) reduces to Lθ

n−1
y=1 1/y. This

Fig. 1. Comparison of the exact versus the approximate probability of polymor-
phism in a sample of size n = 2 (solid line). The dashed line shows equality.

estimator has been derived with the infinite-sites model that
assumes negligible scaled mutation rates θ .

Obviously, the quality of the approximation depends on the
amount of polymorphism: according to our simulations, 2θ0θ1/
(θ0 + θ1) should be below 0.05, or better 0.02 (compare also: Desai
and Plotkin, 2008). In Fig. 1, we plot the exact versus the approxi-
mate probability of polymorphism in a sample of n = 2.

We note that in the case without selection, the same formulas
also hold for n = N , i.e., for the equilibrium distribution of the
whole population with N haploid individuals. With selection, the
case of small θ0 and θ1 has not been explored extensively. It is not
known yet, if formulas similar to (1)–(3) can also be derived.

3. The decoupled Moran model with mutation, selection, and
drift

In this section, we re-derive the equilibrium distribution of
the decoupled Moran model, up to a constant, by showing that
this distribution satisfies detailed balance. Baake and Bialowons
(2008) and Etheridge and Griffiths (2009) use the same modified
Moran model for their derivations. For the case of small mutation
rates θ , we will derive a simple constant of proportionality and
the allele-frequency spectrum, sojourn times, and divergence rates
conditional on the ancestral and fixed allele.

3.1. Basic model

With the Moran model, generations overlap. It moves from
step t to step t + 1; between steps, exponentially distributed
waiting timesmay be introduced. In the pure-drift case, a constant
population of N haploid individuals is assumed. In a birth/death
event, a random individual j dies and is replaced by the offspring
of a randomly chosen individual i. The process repeats indefinitely.
The lifespan of an individual is geometrically distributed with a
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