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a b s t r a c t

The relationship between system-level and subsystem-level master equations is investigated and then
utilised for a systematic and potentially automated derivation of the hierarchy of moment equations in a
susceptible-infectious-removed (SIR) epidemic model. In the context of epidemics on contact networks
we use this to show that the approximate nature of some deterministic models such as mean-field
and pair-approximation models can be partly understood by the identification of implicit anomalous
terms. These terms describe unbiological processes which can be systematically removed up to and
including the nth order by nth order moment closure approximations. These terms lead to a detailed
understanding of the correlations in network-based epidemicmodels and contribute to understanding the
connection between individual-level epidemic processes and population-level models. The connection
withmetapopulationmodels is also discussed. Our analysis is predominantlymade at the individual level
where the first and second order moment closure models correspond to what we term the individual-
based and pair-based deterministic models, respectively. Matlab code is included as supplementary
material for solving these models on transmission networks of arbitrary complexity.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Epidemic dynamics are driven by processes which are typi-
cally stochastic in nature (Bartlett, 1956; Bailey, 1975). Neverthe-
less the probabilities of these processes can often be represented
or approximated deterministically by a differential form of the
Chapman–Kolmogorov equation known as the master equation.
This comprehensive set of differential equations describes how the
probabilities of the states of a system evolve in time. They are
usually too numerous to evaluate numerically although they have
been shown to be relevant for small homogeneous epidemic sys-
tems (Keeling and Ross, 2008). While numerical solutions remain
problematic for systems of any significant size and complexity,
master equations do permit exact stochastic realisations using the
Gillespie algorithm (Gillespie, 1976; Renshaw, 1991), effectively
regenerating the original stochastic epidemic processes.

Master equations are most adept at describing exponentially
distributed stochastic processes. This, coupled with the close
connection between master equations and other deterministic
descriptions of epidemics underlies the almost ubiquitous use of
‘‘rates’’ such as the force of infection and the rate of removal
in the design of deterministic epidemic models (Anderson and
May, 1991). Although other distributions can be used in principle,
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they typically correspond to non-Markovian master equations
and this can present significant implementation difficulties. It is
worth noting that this is a relatively generic limitation of the
deterministic approach.

Several deterministic methods for representing epidemics have
been developed. These include the mean-field models (Ker-
mack and McKendrick, 1927; Anderson and May, 1991), pair-
approximations (Matsuda et al., 1992; Keeling, 1999; Rand, 1999;
van Baalen, 2000; Eames and Keeling, 2002; Murrell et al., 2004;
Sharkey et al., 2006), and metapopulation models (Levins, 1969;
Sattenspiel and Dietz, 1994; Keeling and Rohani, 2008). All of these
attempt to approximate the average time course of an epidemic.
Fundamentally, the average time course is implicit in the master
equation, but the specific assumptions needed to relate this equa-
tion to particular deterministic epidemic models are not always
clear. Identification of the relevant assumptions behind these clas-
sic deterministic models would certainly enhance our understand-
ing of their domain of applicability and their relationship to the
underlying stochastic processes. Indeed, the importance of under-
standing the basic connection between individual-level processes
and population-level deterministic models has been emphasised
several times (e.g. Levin and Durrett, 1996; Bansal et al., 2007).

One obvious approach is to start with the master equation and
construct solvable deterministic models by applying specific as-
sumptions to directly reduce the dimensionality of the state space.
A classic example of this is the Fokker–Planck (or Kolmogorov-
forward) equation (Risken, 1989) forming the theoretical jus-
tification for reaction–diffusion equation models of epidemics
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(Mollison, 1991; Murray, 2003). Another is the van Kampen linear
noise approximation to the master equation (van Kampen, 2007)
leading to a perturbative volume expansion approach (McKane
andNewman, 2004; Ovaskainen and Cornell, 2006). More recently,
other more computationally intensive methods of dimensional re-
duction have been investigated (Sharkey, 2008; Keeling and Ross,
2009; Simon et al., 2010).

In previous work (Sharkey, 2008), a systematic deconstruc-
tion of a deterministic SIR epidemic model on arbitrary trans-
mission networks was used to illustrate the connections between
the master equation, the network-based mean-field models and
the network-based pair-approximation models. Additionally, the
individual-based and pair-based deterministic models were con-
structed. Two assumptions connect these four types of model to-
gether with the master equations:- statistical independence and
homogeneity. Here we extend this understanding by showing that
implicit in the assumption of independence are anomalous terms
describing unbiological processes. These terms enable us to un-
derstand some of the inaccuracies in network-based deterministic
models in a more analytic way than was previously possible.

A side-product of this analysis is a systematic method for
obtaining the hierarchy of moment equations at the individual
level. The closed form of the first and second order moment
equations correspond to the individual-based and pair-based
models respectively. Matlab code is provided as supplementary
material to solve these models on static network-based systems
of arbitrary complexity.

In addition to master equations for systems, master equations
for subsections of systems can also be written down. We refer
to these subsections as subsystems (Sharkey, 2008). For the
present work we start by making a detailed investigation of the
relationships between these equations. In particular, we show
in the next section that the subsystem master equations follow
as a consequence of the system master equation. We also show
(Section 3) that conversely, the master equation of a system can
be obtained from the master equations of its subsystems provided
that the subsystems are statistically independent and, collectively,
fully specify the system state. The relevance of this construction for
an epidemic system is then briefly introduced.

Section 4 elaborates on the main context for the present
work which is a fixed-population susceptible-infectious-removed
(SIR) compartmental model on a contact network. It puts this
in the context of the general discussion of subsystems and
systems, illustrating how moment equations can be derived as a
consequence of the system master equation. It also highlights the
assumption of pairwise statistical independence which is used to
close the first ordermoment equations. Section 5 discusses the link
between this construction and network-based mean-field models
and metapopulation models.

Sections 6 and 7 use the results of Section 3 to generate a better
understanding of the problems with the pairwise independence
assumption. In particular, we show that it generates implicit terms
with no obvious interpretation and that these terms allow us
to understand the failure of the assumption for certain contact
networks. Sections 8 and 9 show how this analysis can be
systematically extended beyond the pair level to all orders.

2. Systems, subsystems and master equations

Following prior work (Sharkey, 2008), we start by considering
the stateΓ α of an arbitrary systemΓ . The probability of the system
being in state Γ α is numerically equivalent to the expectation
value ⟨Γ α

⟩ where here, Γ α represents a number which has value
1 when the system is in state Γ α and zero otherwise. We will
therefore use ⟨Γ α

⟩ to denote both the probability of the state

and/or its expectation value. In this notation, the master equation
for Γ is:

˙⟨Γ α⟩ =

−
β

σ αβ⟨Γ β
⟩ −

−
β

σ βα⟨Γ α
⟩ (1)

where σ αβ denotes the transition rate from state Γ β to state Γ α

and here and in what follows, the summations are over all possible
system states. Note that this more conventional index ordering is
opposite to that used in Sharkey (2008). To avoid any ambiguity,
the diagonal elements of all transition matrices in this paper are
defined to be zero.

We suppose that within the system Γ , there exist well-defined
smaller systems which we refer to as subsystems. We denote
these subsystems by ψi where the index i distinguishes one
subsystem from another. In the next section we will assume that
the subsystems do not overlap and that they collectively specify
the full system state without ambiguity. Presently we just need
to suppose that at least one subsystem of Γ can be identified in
an unambiguous manner. We can now write down a set of master
equations for the individual subsystem states:

˙⟨ψa
i ⟩ =

−
b

ωab
i ⟨ψb

i ⟩ −

−
b

ωba
i ⟨ψa

i ⟩ (2)

where ωab
i denotes the transition rate from state ψb

i to state ψa
i

for the subsystemψi. Here and throughout the paper, summations
are assumed to be over all of the subsystem states available to ψi.
We also denote system states byGreek superscripts and subsystem
states by Roman superscripts.

Both the system and subsystemmaster equationsmust be valid
and it is instructive to determine the conditions under which one
can be derived as a consequence of the other. Let us attempt
to obtain Eq. (2) from Eq. (1). We start with the probability of
subsystem ψi being in state ψa

i which is given by the sum of the
probabilities of the system states for which ψi is in state ψa

i :

⟨ψa
i ⟩ =

−
α

⟨Γ α
⟩Dαai (3)

whereDαai is a Kronecker-type delta in the states of the subsystems
ψi such that it has value 1 if the system state Γ α implies the
subsystem state ψa

i and zero otherwise:

Dαai =


1 if Γ α

⇒ ψa
i

0 otherwise. (4)

Taking the derivative of Eq. (3) with respect to time and
substituting from Eq. (1) gives:

˙⟨ψa
i ⟩ =

−
α

˙⟨Γ α⟩Dαai

=

−
αβ

σ αβ⟨Γ β
⟩Dαai −

−
αβ

σ βα⟨Γ α
⟩Dαai

=

−
αβ

σ αβ⟨Γ β
⟩Dαai

−
b

Dβbi



−

−
αβ

σ βα⟨Γ α
⟩Dαai

−
b

Dβbi


=

−
bαβ

σ αβ⟨Γ β
⟩Dαai Dβbi −

−
bαβ

σ βα⟨Γ α
⟩Dαai Dβbi . (5)

Swapping the dummy indices α and β in the second term on the
right gives:

˙⟨ψa
i ⟩ =

−
bαβ

σ αβ⟨Γ β
⟩Dαai Dβbi −

−
bαβ

σ αβ⟨Γ β
⟩Dβai Dαbi . (6)
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