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a b s t r a c t

In this work, the solvent evaporation method for the estimation of the Fickian diffusion coefficients in
binary and in multi-component solvent(s)–polymer systems is reviewed. The existing frameworks for
multi-component diffusion are also examined in detail. The described methodology is applied to estimate
the diffusion coefficients in the binary systems acetone/cellulose acetate (CA), solvent/poly(vinyl acetate)
and in the ternary system water/acetone/cellulose acetate, which is widely used in asymmetric mem-
brane manufacture. The solvent evaporation process from these systems is studied as a one-dimensional
numerical experiment. For this purpose, the evaporation process is modeled as a coupled heat and mass
transfer problem with a moving boundary. The Galerkin finite element method (GFEM) is used to simulta-
neously solve the non-linear governing equations. The model predictions are compared with experimental
data for polymer solution weight vs. time during evaporation to estimate the unknown parameters of the
Vrentas–Duda equation. The estimated diffusion coefficients were found to be in good agreement with
those measured by other methods. It is believed that this review might contribute to a more rational
design of industrial processes.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion in solvents–polymer systems is of major importance
in a number of industrial processes, including membrane manufac-
ture [1–4], foam and coating formation [5,6], de-volatilization [7]
and the effectiveness of polymerization reactors at high conversion
[8].

The industrial importance of diffusion has led to the devel-
opment of numerous physical theories for the estimation of the
diffusion coefficients in solvent(s)–polymer systems [9–17]. Most
of these theories are based on sound principles such as the free-
volume theory [18,19].

Traditional techniques to measure diffusion coefficients include
sorption and desorption techniques, radiotracer methods, chro-
matography, and nuclear magnetic resonance (NMR) experiments
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as reviewed by Crank and Park [20], Tyrrell and Harris
[21].

The need for processes optimization in polymer industry
along with the recent advances in computational methods [22,23]
was the starting point for the solvent evaporation method. This
method combines simple laboratory experiments with advanced
modeling, in order to get accurate estimates of diffusion coeffi-
cients. In particular, laboratory experiments consist of gravimetric
measurement of the solvent evaporation rate from appropriate
cast polymer–solvent(s) films. The measured solvent evaporation
rate is compared with model predictions in order to estimate
the unknown parameters of the Vrentas–Duda equation [18,19].
The aim of this work is to review recent advances in the field
of the estimation of diffusion coefficients by using the solvent
evaporation method.

In the first part of this work the literature is reviewed and the
fundamentals of diffusion as well as the free-volume theory are
briefly discussed by using sound principles of non-equilibrium
thermodynamics. In the second part, modeling equations for the
solvent(s) evaporation from polymer solutions along with the
Galerkin finite element method (GFEM) are examined. In Sections
3 and 4 of this work the solvent evaporation method is applied
to binary and to ternary solutions, respectively. As main material
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the cellulose acetate (CA) has been selected, due to its importance
in membrane manufacture. Finally, in Section 5 conclusions are
drawn.

1.1. Diffusion fundamentals

1.1.1. Physical framework for diffusion
According to Truesdell [24] the diffusion theories can be clas-

sified as kinetic, hydrodynamic and thermodynamic models. The
first theory developed is the kinetic model of Fick [25]. Fick [25],
based on an asserted analogy of diffusion to heat flow, proposed
the following equation for the mass flux ji as a function of the mass
density gradients in a binary mixture having uniform total density:

ji = −D12 grad�i; i = 1, 2 (1)

D12 is the Fickian phenomenological coefficient and �i is the mass
density of the i-th substance. The above equation can be generalized
to multi-component mixtures also including the effects of temper-
ature (Soret effect) on the mass flux (for a detailed review see Refs.
[26,27]):

ji = −DT
i grad ln T −

N−1∑
j=1

Dij grad�j; i = 1, 2, 3, . . . , N (2)

where DT
i

represents the multi-component thermal diffusion coef-
ficients, T is the absolute temperature, and Dij is the Fickian
phenomenological coefficient between the i-th and j-th substance.

The most representative model for the hydrodynamic theories
is the Maxwell–Stefan formulation [28–32] which generated con-
siderable interest in the literature [33–35]. As reviewed by Cussler
[36,37], Taylor and Krishna [38], Matuszak and Donohue [39] the
Stefan–Maxwell formulation was applied in many areas including
membrane and film science, chromatography, controlled-release,
adsorption, catalysis, extraction and absorption, and distillation.

The thermodynamic theories include the Onsager–Fuos model
[40–43] for diffusion:

d�i

dz
= −

N∑
k=1

ckRik(vi − vk); i = 1, 2, . . . , N (3)

where �i and ci are the chemical potential and the molar concen-
tration of the i-th substance and Rij are the resistance (friction)
coefficients. Most workers in the area, assume the Rij coefficients
to be symmetrical according to the to Onsager principle [44,45]:

Rij = Rji; i, j = 1, 2, . . . , N (4)

The underlying relations between the various diffusion models
were investigated by many researchers [35,39,46].

Regarding membrane and film formation modeling, most work
relies on the Fick law combined with the Onsager–Fuos model
[47,48]. More specifically, the resistance coefficients defined in Eq.
(3) are related to the usual Fickian diffusion equations (Eq. (1)) by
using the definition of the diffusion molar flux (JV

i
) relative to the

volume average velocity vV [26,27]:

JV
i = −

N−1∑
j=1

Dij gradcj = ci(vi − vV ); vV =
N∑

i=1

uivi;

N∑
i=1

JV
i VMi = 0; c1VM1 + c2VM2 = 1 (5)

where ci is molar concentration, VMi represents specific partial
molar volume and ui stands for the volume fraction of the i-th sub-
stance, respectively. By subtracting and adding the volume-average
velocity vV in Eq. (3), we can give write the diffusion coefficients,
Dij, in terms of the resistance coefficients Rij.

However, the dependence of the resistance coefficients on con-
centration and temperature is not known. To reduce the high degree
of freedom one has to resort to the self-diffusion coefficients.

1.1.2. Self-diffusion coefficients
The self-diffusion coefficients stand for the mass transfer in

the absence of external gradients (temperature, concentration,
etc.) [49]. They are usually measured by studying the movement
of labeled compounds in chemically uniform systems. The self-
diffusion coefficients D1, D2 for a binary solution can be written
as a function of the resistance coefficients (friction) and the molar
concentrations as [21]:

D1 = RT

c1R1∗1 + c2R12
; D2 = RT

c2R2∗2 + c1R12
(6)

Here R represents the universal gas constant, T stands for tem-
perature in Kelvin and Ri·i represents the resistance (friction)
coefficient of i-th substance isotopes. The above equation gives
the self-diffusion coefficient as experimentally determined in a
ternary radiotracer experiment. In fact self-diffusion coefficients
are measured by labeling some molecules of one component, say
component 1, and following the diffusion of the labeled and unla-
beled molecules through a chemically homogenous solution. The
system can be treated as a ternary one consisting of unlabeled com-
ponent 1, labeled component 1 designated as 1* and component 2
(Ref. [21], p. 81). In the above equation c1 represents total molar
concentration (labeled + unlabeled) of species type 1.

In order to measure self-diffusion coefficients in a ternary
system (e.g. formamide–acetone–polymer) one has to take into
account a quaternary system (Experiment A: labeled formamide
1*, formamide 1, acetone 2, polymer 3, Experiment B: formamide 1,
labeled acetone 2*, acetone 2, polymer 3) and the following equa-
tions are directly derived [16]:

D1 = RT

c1R1∗1 + c2R12 + c3R13
; D2 = RT

c2R2∗2 + c1R12 + c3R23
(7)

In the above the resistance coefficients between isotopes (R1*1,
R2*2) are not equal to the resistance coefficients of the unlabelled
compounds (R11, R22) [21].

Regarding the relation of self-diffusion diffusion coefficients to
the Fickian diffusion coefficients for binary solutions, the following
equation is derived for the Fickian diffusion by using Eqs. (5) and
(6):

D12 = VM2

R12

(
∂�1

∂ ln c1

)
T,P

(8)

There are two distinct cases: the case of constant resistance
coefficient ratio and the case of moderate solvent concentration.
Bearman [50] has shown that the following equation holds for the
case of constant resistance coefficient ratio:√

R22

R11
=
√

R22

R1∗1
= VM2

VM1
(9)

By using Eqs. (8) and (9) along with the geometric rule(
R12 =

√
R11R22

)
, one directly shows that the mutual diffusion

coefficient is given as a function of solvent molar concentration c1,
chemical potential �1 and the self-diffusion coefficient D1 by the
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