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a  b  s  t  r  a  c  t

Taylor’s  power  law  (TPL)  describes  the  empirical  relationship  �2 = a�b where  �2 are  sample  variances
and  �  are  sample  means  in subsets  of  data  in a data  set.  Equivalently,  TPL  states  that  the  logarithm  of
the  sample  variance  is a linear  function  of  the  logarithm  of the  sample  mean  across  different  subsets  of
data.  Here  we  show  that  crop yields  follow  this  relationship  in  several  published  data  sets  from  varied
situations.  We  show  that  TPL  is  frequently,  but  not  always,  valid  for various  factors  structuring  the  data
including  varieties,  crop  species,  trial environments  or countries.  We  propose  that  the residuals  from  the
linear regression  of  log(�2) against  log(�)  can be used  as  a measure  of stability,  called  POLAR  (Power  Law
Residuals).  We  compare  POLAR  stability  with  other  commonly  used  measures  of  stability,  and  show  that
POLAR  stability  offers  an  advantage  over  some  frequently  used  stability  measures.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In 1961, the British ecologist and entomologist Roy Taylor
reported a series of observations that showed surprisingly simi-
lar patterns in data from several insect groups, earthworms and
other invertebrates as well as plant viruses and fish (Taylor, 1961).
For all these groups, population counts or other measures of den-
sity showed a power-law relationship between the sample variance
�2 and the sample mean �. This relationship, �2 = a�b, became
known as Taylor’s Power Law (TPL), or Taylor’s Law of fluctu-
ation scaling (Cohen, 2013), though the relationship had been
published and used earlier by other researchers. Logarithmic trans-
formation of the equation �2 = a�b results in a linear relationship:
log(�2) = log(a) + blog(�). Taylor, who originally found this rela-
tionship for data from aerial sampling of aphids, suggested that
aggregation is key to understanding the mechanisms underlying
this power law and he interpreted b as an index of aggregation.

Subsequently, TPL was  verified in hundreds of further species
(e.g., Eisler et al., 2008), with data stemming from a wide variety of
ecosystems, from bacterial cultures in a laboratory (Ramsayer et al.,
2012) to forests (Cohen et al., 2012; Cohen et al., 2013). TPL was also
found to be valid for a tremendous range of non-biological phe-
nomena including traffic of Internet routers (Duch & Arenas, 2006),
transactions of the New York Stock Exchange, rainfall, and the
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printing activity of a large university printer (Eisler et al., 2008).
Because of its ubiquity, TPL has attracted wide attention from
empirical researchers and theorists of multiple, often unrelated
disciplines.

As data demonstrating TPL are not restricted to ecological
research, the original notion suggested by Taylor and co-workers
that TPL follows from explicit behavioural mechanisms such
as aggregation and migration has become untenable. An alter-
native explanation of TPL (Anderson et al., 1982) is that TPL
has stochastic roots and that behavioural mechanisms are not
necessary to generate data sets exhibiting TPL. In this view,
TPL can result from demographic and environmental stochastic-
ity. TPL can indeed be generated by very different population
growth models such as the Lewontin-Cohen random walk (Cohen
et al., 2013) and the exponential model (Cohen, 2013). While
debate on stochastic vs. behavioural explanations of TPL contin-
ues (Kendal and Jørgensen, 2011; Arruda-Neto et al., 2012), it
has recently been suggested that both perspectives are valid in
that “the behavioral models have the potential to explain how
the interactions of individuals could generate the population-level
phenomenology summarized by the stochastic models” (Cohen,
2013).

In a related area of research, H. Fairfield Smith showed linear
relationships between the logarithm of plot size in so-called ‘blank’
field experiments (without any treatments) and the logarithm of
the variance of wheat yield per plot (Smith, 1938). Smith, however,
was not interested in the relationship between means and variance
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per se, but his main interest was to use this relationship to find an
optimal plot size (also see Taylor et al., 1999).

As far as we are aware, TPL has not yet been applied to or tested
for crop yields. In this paper we demonstrate the validity of TPL
for crop yields in various contexts and on various scales. Further,
we introduce a new measure of yield stability which is based on
TPL. We  call this new index POLAR stability (based on POwer LAw
Residuals) and compare this approach with the behaviour of two
commonly used stability indices, the coefficient of variation (CV)
(Francis and Kannenberg, 1978) and the Finlay–Wilkinson (FW)
regression slope (Finlay and Wilkinson, 1963).

Material and methods

Data sets and data filtering

Data sets were analysed to represent crop yield variation (1)
at various levels including plot level (within field trials) (Seufert
et al., 2012); (2) between environments (years and trial sites) (Jones
et al., 2010; Vlachostergios et al., 2011); and (3) at a global level
(national yield statistics from the Food and Agriculture Organiza-
tion database, FAOStat) (FAOSTAT, 2014).

The dataset from Seufert et al. (2012) was collected for a meta-
analysis comparing the yields of conventionally and organically
managed crops. The dataset contains observations from published
studies where for each observation the mean yields and corre-
sponding standard deviations were collected. The original dataset,
containing 316 paired observations of conventional and organic
yields, was downloaded from the supplementary files published
online with the original study.

The data were then filtered in the following way. First, all data
not convertible into units of t ha−1 were discarded (e.g., units of
boxes or bales per ha, or units of kg per plant). Data in bushels
per acre were converted as 1 bu ac−1 = 0.06277 t ha−1 for maize and
0.06725 t ha−1 for wheat and soybean. Second, the original dataset
contained some double or multiple entries where means and vari-
ances were equal among different observations within studies. For
each system separately, only one of the equal observations within
studies was kept. The final dataset contained 268 observations from
the organic system and 228 for the conventional system, i.e., a total
of 496 data points from 33 crop species. Observations from maize,
wheat, tomato and soybean dominated the dataset with 128, 80,
45 and 43 observations, respectively.

The second dataset is from a study on the adaptability of dif-
ferent lentil genotypes to organic farming, conducted in Greece
(Vlachostergios et al., 2011). Twenty genotypes were grown in five
environments (three years in one location and two years in another
location). In each environment (i.e., year × location combination),
the lentils were grown under both organic and conventional crop-
ping management, in separate trials, and with three replicates each.
Calculations are based on the reported means over three replicates.

In the third dataset, 19 genotypes of wheat, from two  quality
groups (milling and feed), were grown at two organic sites (Sheep-
drove and Wakelyns) and two conventional sites (Metfield and
Morley) in the UK over three years (Jones et al., 2010); the pub-
lished data are the means of three replicates per trial environment.
For calculation of TPL, means and variances for each genotype are
calculated across the environments. For the lentil and the wheat
study, means and variances were calculated across (a) all organic
environments (nL,O = 5 for lentils, nW,O = 6 for wheat); (b) all con-
ventional environments (nL,C = 5, nW,C = 6); and (c) all environments
(nL,A = 10, nW,A = 12).

The FAO dataset was downloaded in November 2014 from
http://faostat3.fao.org/download/ For wheat, rice and potatoes,
data were extracted for area (recorded in ha) and yield (recorded

in hg ha−1). These data were then filtered. First, only those coun-
tries with a complete set of the last ten years (2004–2013) were
retained. Second, countries where average area between 2004 and
2013 was  below 10,000 ha were excluded. In addition, to exclude
data that indicated low reliability, we excluded countries in which
yields were rounded to 1000 hg ha−1 in two  or more of 10 years and
countries where yields were equal in consecutive years in two or
more of 10 years. For wheat, rice and potatoes, these filters resulted
in final datasets of crop yields from 90, 73 and 89 countries, repre-
senting 99.3%, 97.9% and 96.8% of the global area grown with these
crops in 2013, respectively.

Calculations and statistical analysis

All analyses were performed with the programme R, version
3.0.0. Means (�) and variances (�2) were calculated per variety over
all environments for the lentils and wheat dataset, and per country
over all years for the FAO dataset. Subsequently, a linear regres-
sion was calculated for log10 of the variance over the log10 of the
mean. In order to test the linear relationship between log(�) and
log(�2) we applied a forward selection procedure by starting with
a linear model and subsequently adding higher order polynomials
(quadratic and cubic terms) and evaluating the model fits by the
Akaike information criterion (AIC), i.e., terms were added until the
AIC increased (Burnham and Anderson, 2002). Cubic terms were
never significant in any of the analyses.

Residuals from the linear regression models were tested for
normality, skewness (m3) and kurtosis (m4). Deviation from nor-
mality was tested with the Shapiro–Wilk test (Royston, 1982b).
Deviation of skewness from zero and deviation of excess kurto-
sis (m4 − 3) from zero were tested with t-tests on n − 2 degrees of
freedom (Crawley, 2013); (‘excess kurtosis’ = 0 is equivalent to kur-
tosis = 3, since the normal distribution has a kurtosis of 3). In case
of non-normal residuals, the variable y = log(�2) was  transformed
using the Box–Cox transformation (z = (y� − 1)/�) with maximum
likelihood optimisation of � (Crawley, 2013), in order to quanti-
tatively describe the behaviour of the residuals. Homoscedasticity
was checked visually using the plot(model) function in R and with
the Goldfeld–Quandt test (Goldfeld & Quandt, 1965) using the
gqtest function in the R library lmtest.  In addition, the relationship
between log(�) and log(�2) was  tested with Spearman’s rank cor-
relation coefficient as a non-parametric test not dependent on the
assumptions of linear regression.

2. Results

Taylor’s power law: testing validity for crop yields at various
scales

Here we  show that TPL is sometimes but not universally valid
for crop yields across various scales (across environments, and at a
global level) and for various factors structuring the data (genotypes,
crop species, countries, years).

For the dataset from Seufert et al. (2012), based on variances
of crop yields mainly within field trials, there was a highly signif-
icant (P < 0.001) positive correlation between log(�) and log(�2)
(Fig. 1a), whether the organic and conventional systems were ana-
lysed separately or together. Paired observations from the two
systems (organic and conventional) of both means and variances
are stochastically dependent. Strictly speaking, this would affect
the validity of significance tests for the regression and also tests
of assumptions. However, similar results were obtained when fit-
ting regressions within systems separately (Fig. 1a), where means
and variances were stochastically independent. According to the
Goldfeld–Quandt test, the data were not significantly heteroscedas-
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