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a  b  s  t  r  a  c  t

Genomic  selection  (GS)  offers  breeders  the  possibility  of using  historic  data  and  unbalanced  breeding
trials  to  form  training  populations  for predicting  the  performance  of new  lines.  However,  when  using
datasets  that  are  unbalanced  over  time  and  space,  there  is  increasing  exposure  to  different  genotype
–  environment  combinations  and  interactions  that may  make  predictions  less  accurate.  Global  cross-
validated  genomic  prediction  accuracies  may  be high  when  using  large  historic  datasets  but  accuracies
for  individual  years  using  a forward-prediction  approach,  or accuracies  for individual  locations,  are  often
much  lower.  The  objective  of  this  study  was  to evaluate  the overall  accuracy  of  genomic  predictions
for  untested  genotypes  using  an  unbalanced  dataset  to train  a  genomic  selection  model,  and  to explore
ways  of  combining  genomic  selection  and  genotype-by-environment  (G×E)  interaction  models  to  better
target  untested  lines  to different  locations.  Using  the International  Center  for Maize  and  Wheat  Improve-
ment’s  (CIMMYT)  Semi-Arid  Wheat  Yield  Trials  (SAWYT)  we  assessed  the  accuracy  of  genomic  predictions
and  the  potential  to subset  these  nurseries  using  the  concept  of  mega-environments  (ME)  adapted  to a
genomic  selection  context.  We  found  that  there  was  no difference  in  accuracy  between  models  accounting
for  G×E interactions  and  global  models.  Data-driven  methods  of  clustering  locations  based  on similarities
in  genomic  predictions  also failed  to  improve  accuracies  within  clusters.  Using  a  simulation  based  on  the
empirical  SAWYT  data,  we  found  that  if  there  were  different  true genotypic  values  between  clusters,  there
was  an  advantage  to modeling  G×E  in  prediction  models.  In the  SAWYT  dataset  it appears  that  there  is
not  a consistent  pattern  of  genotype-by-environment  interaction  among  the  ME,  and  this  dataset  is not
balanced  enough  to  partition  into  new  clusters  that have  predictive  power.

©  2013  The  Authors.  Published  by Elsevier  B.V. 

Abbreviations: CIMMYT, International Center for Maize and Wheat Improve-
ment;  FA, factor analytic model; G-BLUP, genotypic covariance matrix-best linear
unbiased predictor model; GID, genotypic identification number; G×E, genotype by
environment; GL, global model; GS, genomic selection; IN, interaction model; ME,
mega-environment; SAWYT, semi-arid wheat yield trial; SP, cluster-specific model.
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1. Introduction

1.1. Potential of genomic data to improve the utility of
unbalanced historical datasets

The ubiquity of unbalanced historic datasets in plant breeding
programs is a longstanding challenge. Breeding lines are selected
and promising lines are advanced to a point where enough seed is
available for multi-locational trials of candidates for release. Other
than possibly one or two  long term checks, the entries in these tri-
als change yearly. The use of phenotypic data from relatives and
ancestors has been limited by the challenge of maintaining ade-
quate pedigree records and the expense of obtaining genotypic data
on hundreds of lines at early stages in a breeding program.

This  situation is rapidly changing, however, as new genotyping
platforms have made it possible to obtain high-density markers at
very low cost (Elshire et al., 2011; Poland and Rife, 2012). Software
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and database tools have become available that make it possible to
keep track of phenotypic, genotypic and pedigree records for thou-
sand of individuals over many years. Because of improvements in
genotyping and statistical methods that can handle this type of
data, genomic selection has become possible for many breeding
programs. Genomic selection makes predictions of performance for
new lines or improves estimates of performance for these lines
by using phenotypic and genomic data from related genotypes
(Heffner et al., 2009; Lorenz et al., 2011). While there is much
interest in using genomic selection and historical data to improve
current selection programs, this has not yet been put into practice
because of logistical difficulties in assembling data and questions
about the best data and sets of genotypes (“training populations”)
to use in model training for individual breeding programs or target
environments. The challenges are greater for breeding programs
that span very diverse environmental conditions, as these pro-
grams are faced with high levels of G×E interactions, both across
years within a target population of environments, and among target
populations of environments.

The  question of how to use historical data most effectively in
the presence of large G×E interactions is particularly relevant for
the international breeding programs of the Consultative Group on
International Agricultural Research (CGIAR). These breeding pro-
grams typically conduct selection in a limited number of locations
and then distribute new breeding lines and varieties for use by
national agricultural research and breeding programs in diverse
countries and regions. International selection programs could ben-
efit from being better able to use data returned by international
collaborators, especially if data could be used to define regions with
different patterns of genotypic performance to better target partic-
ular environmental conditions. National breeding programs could
greatly benefit from using data from other programs with similar
environmental conditions, combined with their own  historical data
and the international center data, in order to increase their power
to detect superior lines for their target environments.

The objective of this study was to assess the accuracy of genomic
predictions in a large unbalanced dataset. We  used CIMMYT’s inter-
national semi-arid wheat yield trial (SAWYT), with data reported
on grain yield for genotypes sent out by CIMMYT over a period of
17 years. See Appendix A for more information and references on
the CIMMYT international yield trials. We  first looked at the global
accuracy and variation in accuracy over time. Then we  tested dif-
ferent methods of accounting for G×E interaction when making
genomic predictions. This included the most common methods for
including a G×E component of variation in classic phenotypic anal-
ysis, with the inclusion of genomic data to address the issue of
unbalanced genotypes in the trials over time (background infor-
mation on G×E interaction analysis is presented in Appendix A).
We also used simulated data to examine how different methods
of accounting for G×E responded to changing levels of genotypic
balance and G×E in multi-year, multi-locational trials. Our goal
was to evaluate prediction models that could enable international
breeding programs to target lines from their selection candidate
nurseries to particular types of environments using information
from related genotypes in international trials.

2. Materials and methods

2.1.  Genotypic data

The  wheat genotypes included in SAWYT 1–17, indexed by
their genotypic identification number (GID), were characterized
using genotyping-by-sequencing following the same procedure as
described in Poland et al. (2012). A total of 45,818 SNP mark-
ers were obtained, and 34,843 were retained with a maximum of

70% missing data for each individual marker. The marker-based,
additive relationship matrix (Am) for the 622 genotypes was  cal-
culated with the function A.mat in R package rrBLUP, version 4.1
(R Development Core Team, 2012; Endelman, 2011), which centers
(but does not standardize) each marker by the population mean
(VanRaden, 2008). Missing data were imputed with the “EM” option
in A.mat, which implements a multivariate normal expectation-
maximization (EM) algorithm (details in Poland and Rife, 2012).

2.2.  Data curation

Phenotypic data for the SAWYT was obtained from the CIMMYT
bioinformatics unit after initial data cleaning to remove outliers.
Yield was  the most complete trait; out of a total of 723 trials
in the dataset, yield was measured in 611 individual trials and
237 unique locations over 17 years (planted in years 1992–2009,
excluding 1993 because no SAWYT was sent out that year). Each
year a separate set of lines was  sent to international collaborators
who requested seed for the trial. Most trials in the SAWYT had three
replications in the first year (1992), two replications in years 2–5
(1994–1997) and two  replications with incomplete blocks within
reps starting with the sixth year. Data were curated to keep only
genotypes with GBS marker data available (622 total). Repeated
checks (Dharwar Dry and Cham 6) were eliminated in all years
subsequent to their first occurrence because a single check was
not considered adequate to characterize environmental conditions
or G×E over the 17 years of data available.

Two criteria were used to identify and eliminate trials
with errors in matching genotypes and phenotypes. The ratio
Va/(Va + Ve), the proportion of variance due to additive genetic
effects, was  used to eliminate trials where genotypes did not match
phenotypic data. Trials with this ratio less than 0.01 were consid-
ered to have errors. Variance components Va & Ve were calculated
using the relationship matrix Am with the kin.blup function in
the package rrBLUP (Endelman, 2011). Replicated trials were also
curated based on having Vg/(Vg + Ve) greater than 0.01. Variance
components Vg & Ve were calculated using the lmer function in the
R package lme4 (Bates et al., 2012). Low values were likely due to
mismatched plots of the same genotype from the different reps of
the trial. This ratio is referred to as the repeatability or broad-sense
heritability, the proportion of variance due to all genetic variance
effects, calculated with variance components assuming indepen-
dent genotypes. This step was  used only to eliminate trials that
must have had errors in data reporting, and thus near-zero values
of these ratios. The final dataset had a total of 168 unique locations
and 424 individual trials.

2.3.  Clustering methods for grouping similar locations

Because global genomic predictions may  not be the most rele-
vant to individual breeding programs in particular environments,
several methods were used to attempt to group locations into sim-
ilar environmental clusters to improve the accuracy of genomic
predictions within each cluster. CIMMYT has defined global mega-
environments (ME) using climatic patterns, farming systems, water
regimes, and the incidence of biotic and abiotic stress in the major
wheat growing regions of the world. Trials were assigned to ME
by breeders and the bioinformatics group at CIMMYT. A complete
description of these classifications is available in Rajaram et al.
(1993). The ME  present in the SAWYT database, as well as their
average yields and yield variability, are shown in Table 1. ME 3,
with acidic soil, was  only present in two years at one location in
the SAWYT dataset and so was eliminated. The remaining ME were
represented in at least 16 of the 17 years. ME  2/4, alternating high
and low rainfall, was  considered to be part of ME 2 to balance the
ME representation across years, and the subsets 4A, 4B and 4C of
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