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Adapting wheat in Europe for climate change
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a b s t r a c t

Increasing cereal yield is needed to meet the projected increased demand for world food supply of about
70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat
ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was pre-
dicted that the detrimental effect of drought stress on yield would be decreased due to enhanced
tailoring of phenology to future weather patterns, and due to genetic improvements in the response of
photosynthesis and green leaf duration to water shortage. Yield advances could be made through
extending maturation and thereby improve resource capture and partitioning. However the model
predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment ex-
periments quantify the effects of heat and drought at booting and flowering on grain numbers and
potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a
quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase
yield potential and to respond to climate change, increased tolerance to heat and drought stress should
remain priorities for the genetic improvement of wheat.

� 2014 The Authors. Published by Elsevier Ltd.

1. Introduction

Food security has become a major challenge given the projected
need to increase world food supply by about 70% by 2050 (Anon.,
2009). Considering the limitations on expanding crop-growing
areas, a significant increase in crop productivity will be required
to achieve this target (Parry et al., 2011; Reynolds et al., 2011).
Wheat production is highly sensitive to climatic and environmental
variations (Porter and Semenov, 2005). Global warming is charac-
terised by shifts in weather patterns and increase in frequency and
magnitude of extreme events (Lobell et al., 2012; Semenov and
Shewry, 2011; Sillmann and Roeckner, 2008). Increasing tempera-
ture and incidence of drought associated with global warming are
posing serious threats to food security (Lobell et al., 2013). Climate
change, therefore, represents a considerable challenge in achieving
the 70%-increase target in world food production. New wheat

cultivars better adapted for future climatic conditions will therefore
be required. However, the intrinsic uncertainty of climate change
predictions poses a challenge to plant breeders and crop scientists
who have limited time and resources and must select the most
appropriate traits for improvement (Foulkes et al., 2011; Semenov
and Halford, 2009; Zheng et al., 2012). Modelling provides a
rational framework to design and test in silico newwheat ideotypes
optimised for target environments and future climatic conditions
(Hammer et al., 2006, 2010; Semenov and Halford, 2009; Semenov
and Shewry, 2011; Sylvester-Bradley et al., 2012; Tardieu and
Tuberosa, 2010; Zheng et al., 2012). Eco-physiological process-
based crop models are commonly used in basic and applied
research in the plant sciences and in natural resource management
(Hammer et al., 2002; Passioura, 1996; Rötter et al., 2011; Sinclair
and Seligman, 1996; White et al., 2011). They provide the best-
available framework for integrating our understanding of com-
plex plant processes and their responses to climate and environ-
ment. Such models are playing an increasing role in guiding the
direction of fundamental research by providing quantitative pre-
dictions and highlighting gaps in our knowledge (Hammer et al.,
2006; Hammer et al., 2010; Semenov and Halford, 2009;
Semenov and Shewry, 2011; Tardieu, 2003).

The objective of our study was to assess wheat yield potential
under climate change in Europe and identify challenges which
must be overcome to achieve high wheat yields in the future.
Firstly, we used the Sirius wheat model to optimise wheat
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ideotypes for future climate scenarios (Jamieson and Semenov,
2000; Lawless et al., 2005; Semenov, 2009; Semenov and
Stratonovitch, 2013). A wheat ideotype was defined as a set of
Sirius cultivar parameters. By changing cultivar parameters, we
change wheat growth and development in response to climatic and
environment variations and can select ideotypes with better per-
formance under future climates and environments. Sirius is a well
validated model and was able to simulate accurately wheat growth
and grain yield in a wide range of environments, including Europe,
USA, New Zealand and Australia, and for experiments reproducing
conditions of climate change, e.g. Free-Air Carbon dioxide Enrich-
ment (FACE) experiments (Ewert et al., 2002; He et al., 2012;
Jamieson et al., 2000; Lawless et al., 2008; Martre et al., 2006;
Asseng et al., 2013).

Despite the current utility of Sirius, it remains a challenge for
such models to capture the yield response of wheat to extreme
events, particularly when they coincide with sensitive growth
stages (Craufurd et al., 2013). Crop models need an overhaul to
incorporate such responses to extreme weather events (Rötter
et al., 2011). For example, it has been established that wheat yield
is particularly sensitive to abiotic stresses during microsporogen-
esis, anther dehiscence and fertilization because of effects on grain
set (as reviewed by Barnabas et al., 2008; Craufurd et al., 2013); and
just after fertilization because of effects on grain size (Gooding et al.,
2003). To facilitate model development additional data from care-
fully designed experiments will be required. The second approach
presented here is, therefore, to describe the response of wheat to
heat and drought stress as imposed at booting and anthesis, using
pot-grown plants and controlled environment facilities.

2. Assessing yield potential of future wheat ideotypes

We selected ten sites for our study representing wheat growing
regions in Europe (Table 1). Wheat ideotypes were described by
nine model parameters used in the Sirius wheat model to describe
wheat cultivars and considered as most promising for improve-
ment of yield potential under climate change (Table 2). We used an
evolutionary algorithm to optimize ideotypes for future climatic
conditions as predicted by the HadCM3 global climate model.

2.1. Cultivar parameter space for optimisation

The ranges of parameter values used in optimization are pre-
sented in Table 2. The ranges were based on parameters calibrated
by Sirius for modern cultivars allowing for variations reported in
the literature for existing wheat germplasm (He et al., 2012;
Semenov et al., 2009).

2.1.1. Photosynthesis
We assume that a 10% increase in light conversion efficiency

could be achieved in the future. Using a model of canopy

photosynthesis, (Tambussi et al., 2007) showed that the value of
parameter l (Rubisco specificity factor that represents the
discrimination between CO2 and O2) found in current C3 crops
exceeds the level that would be optimal for the present CO2 con-
centration ([CO2]), but would be optimal for [CO2] of about
220 ppm, the average over the last 400,000 years. The simulation
results showed that up to 10%more carbon could be assimilated, if l
was optimal for the current [CO2] level.

In Sirius, radiation use efficiency (RUE) is proportional to [CO2]
with an increase of 30% for doubling in [CO2] compared with the
baseline of 338 ppm, which is in agreement with the recent meta-
analysis of field-scale experiments on the effects of [CO2] on crops
(Vanuytrecht et al., 2012). A similar response was used by other
wheat simulation models, e.g. CERES (Jamieson et al., 2000) and
EPIC (Tubiello et al., 2000).

2.1.2. Phenology
Three cultivar parameters are directly related to phenological

development of wheat, i.e. phylochron Ph, daylength response Pp
and duration of grain filling Gf (Table 2). Modifying the duration
and timing of crop growth cycle in relation to seasonal variations
of solar radiation and water availability may have significant ef-
fects on yield (Akkaya et al., 2006; Richards, 2006). An optimal
flowering time has been the single most important factor to
maximise yield in dry environments (Richards, 1991). The phyl-
lochron Ph is the thermal time required for the appearance of
successive leaves, and is a major driver of phenological develop-
ment (Jamieson et al., 1995, 2007, 1998a). Details of the response
of final leaf number to daylength Pp could be found in Brooking
et al. (1995); Jamieson et al. (1998b). By modifying phyllochron
Ph and daylength response Pp we alter the rate of crop develop-
ment and, therefore, the date of flowering and maturity. Increasing
the duration of the grain filling period Gf has been suggested as a
possible trait for increasing grain yield in wheat (Evans and
Fischer, 1999). In Sirius, Gf is defined as a cultivar-specific
amount of thermal time which needs to be accumulated to com-
plete grain filling (Jamieson et al., 1998b). During grain filling,
assimilates for the grain are available from two sources: new
biomass produced from intercepted radiation and water-soluble
carbohydrates stored mostly in the stem before anthesis. In
Sirius, the labile carbohydrate pool is calculated as a fixed 25% of
biomass at anthesis, and is translocated to the grain during grain
filling. Increasing Gf will increase the amount of radiation inter-
cepted by the crop and, consequently, grain yield. However, in the
model, water-soluble carbohydrates accumulated before anthesis
are transferred into the grain at a rate inversely proportional to Gf.
Therefore, any increase of Gf will also reduce the rate of biomass
remobilisation. Under stress conditions, when grain growth could
be terminated as a results of leaves dying early due to water or
heat stress, grain yield could decrease not only because of the
reduction in intercepted radiation but also because of the

Table 1
Characteristics of 10 European sites.

Site Country ID Longitude Latitude Annual
precipitation (mm)

Minimum temperature
in January

Maximum temperature
in July

Cultivar Sowing

Tylstrup Denmark TR 9.9 57.2 668 �2.9 19.8 Avalon 18/10
Edinburgh UK ED �3.3 55.9 650 0.5 19.0 Claire 10/10
Warsaw Poland WS 21.1 52.1 458 �3.6 24.4 Avalon 18/10
Wageningen Netherlands WA 5.7 52.0 765 �0.8 21.5 Claire 01/11
Rothamsted UK RR �0.35 51.8 693 0.3 20.8 Mercia 10/10
Mannheim Germany MA 8.6 49.5 641 �1.4 24.6 Claire 18/10
Debrecen Hungary DC 21.6 47.6 563 �5.5 26.3 Thesee 18/10
Clermont-Ferrand France CF 3.1 45.8 600 �0.7 25.5 Thesee 15/11
Montagnano Italy MO 11.8 43.3 752 �0.6 28.8 Creso 25/11
Seville Spain SL �5.88 37.42 524 4.3 35.2 Cartaya 30/12
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