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a b s t r a c t

The problem of transient linear 1D diffusion with mass-transfer limitations (boundary layers) at the
medium boundaries and variable diffusant concentrations in both perfectly stirred reservoirs is solved
in terms of Fourier transforms. This novel solution is especially relevant to the interpretation of mea-
surements of diffusion of adsorbing radio-nuclides in compacted clays where porous filters are routinely
used to confine the swelling clay. An analytical expression is obtained for the break-through time with
a due account for the mass-transfer limitations at the medium boundaries. An analysis is carried out of
the influence of finite inlet volume on the time evolution of diffusant flux into the outlet reservoir. A
simple “renormalization” procedure is put forward to make corrections for the decrease in the inlet con-
centration, which makes applicable the classical procedure of interpretation in terms of stationary flux
and break-through time. It is shown that this “renormalization” procedure is fairly accurate in the case of
relatively small absolute sorption capacities of medium (as compared to the inlet reservoir), but its accu-
racy deteriorates with an increase in this parameter. Several examples are considered for the application
of these approaches to the interpretation of experimental data on the diffusion of traces of radioactive
22Na through compacted sodium montmorillonite.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Compacted clays are often used as fine-grained barrier mate-
rials for the isolation of waste disposal sites [1,2]. Because the
hydraulic permeability is usually very low in such materials (typi-
cally: kh < 10−11 m/s for a sand/bentonite mixture with a bentonite
content >50% [3]), the transport of pollutants in such media occurs
via molecular diffusion. Consequently, the diffusion properties of
clays have to be characterized in order to be able to evaluate
their barrier function. An excellent overview of different labora-
tory diffusion testing techniques for waste disposal is given in
[4]. Practical applications on bentonite are given in a number of
publications such as [5–9]. Examples for argillaceous rocks can be
found in [10–14]. In the case of through-diffusion or in-diffusion
from a tracer solution reservoir, the need for confining the samples
between porous filter plates is evident when studying diffusion in
materials that have swelling properties such as bentonite [15,16]
or deteriorate in contact with water such as Opalinus Clay [17].
The use of filter plates at the boundaries, however, can lead to
mass-transfer limitations. As long as the diffusion permeabilities
of the porous filters are much larger than the diffusion permeabil-
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ity of the clay, the mass-transfer limitations due to the filters can
be neglected and the well-known solutions of the diffusion equa-
tion can be used [4,18]. However, when the filters have diffusion
permeabilities comparable to or lower than that of the clay sample,
mass-transfer limitations at the clay boundaries have to be taken
into account. Put [19] obtained a Laplace-transform solution for tak-
ing into account the effect of filters in the case of through-diffusion
measurements. However, he assumed the diffusant concentration
in the inlet reservoir to be constant.

The sorption capacities of compacted clays with respect to
cationic radio-nuclides are often quite high [4,15,16]. Accordingly,
considerable amounts of diffusant are adsorbed by the clay in the
course of diffusion experiments. To have the diffusant concentra-
tion in the inlet reservoir approximately constant irrespective of
that, either the volume of this reservoir need to be very large or cer-
tain amounts of diffusant have to be periodically added to it in order
to offset the losses due to the adsorption. Both of those options are
technically difficult to implement, in particular, due to the fact that
many radio-tracers are quite expensive. Therefore, the constancy
of diffusant concentration in the inlet reservoir is practically never
achieved in experimental practice.

The variation of diffusant concentration in both feed and receiv-
ing reservoirs was first taken into account by Spacek and Kubin
[20]. However, they disregarded the mass-transfer limitations at
the medium boundaries. The latter (as well as the variable diffu-
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sant concentration in the inlet reservoir) were accounted for by
Jahnke [21], but only in the limiting case of in-diffusion (infinitely
thick medium). We are unaware of attempts to account for the
mass-transfer limitations and the variable reservoir concentrations
occurring simultaneously for finite medium thicknesses.

We shall obtain a general solution to the problem of linear 1D
diffusion with mass-transfer limitations at the medium bound-
aries and with variable diffusant concentrations in both perfectly
stirred reservoirs in terms of Fourier transforms. This solution
will be used to derive a new analytical expression for the break-
through time with a due account of mass-transfer limitations.
Besides that, it will be employed to check the scope of applica-
bility of a flux renormalization procedure allowing for a correction
for the decrease of diffusant concentration in the inlet reservoir.
The utility of our theoretical approaches will be illustrated by
using the results of measurements of diffusion of radioactive 22Na
through highly compacted sodium montmorillonite equilibrated
with NaClO4 solutions of several ionic strengths reported in [22].

2. Theory

The basis is the classical equation of non-steady-state diffusion
[18]:

˛
∂c(x, t)

∂t
= De

∂2c(x, t)
∂x2

(1)

where c is the concentration of “free” (non-adsorbed) diffusant,
˛ is the so-called rock capacity factor (defined as dimensionless
distribution coefficient between the medium and an equilib-
rium solution), and De is the effective diffusion coefficient in the
medium. The coefficients are assumed to be independent of diffu-
sant concentration (linear sorption). Further, it is supposed that the
boundary layers have negligible sorption capacities; therefore the
concentration profiles inside them are linear anytime.

It should be stressed that our analysis is primarily related to the
experimental studies of diffusion of trace amount of radio-nuclides.
Due to the very low concentrations of radio-tracers (as compared
to other solutes), the state of thermodynamic equilibrium of the
system is practically not perturbed by the introduction of diffu-
sant. Accordingly, there are no osmotic flows in the system, and
usually the sorption can be considered linear, indeed, despite, for
example, the considerable impact of electrostatic phenomena on
the diffusion in clays.

2.1. Boundary conditions and material balances

It is assumed that the solutions in the reservoirs are perfectly
stirred. Therefore, the solute fluxes at the medium boundaries are
directly proportional to the concentration differences across the
corresponding boundary layers, i.e.

−De
∂c

∂x

∣∣∣∣
x=0

= Pb(c1(t) − c(0, t)) (2)

−De
∂c

∂x

∣∣∣∣
x=L

= Pb(c(L, t) − c2(t)) (3)

where Pb is the diffusion permeability of the boundary layers
(assumed to be the same for both of them and defined as the effec-
tive diffusion coefficient over the thickness), c1,2(t) are the solute
concentrations in the corresponding reservoirs, the origin of the
space variable x is chosen at the left medium boundary, and L is

the co-ordinate of the right medium boundary.1 The conditions of
material balance are that the rates of changes in the diffusant con-
centrations in the reservoirs are proportional to the solute fluxes
in and out of the medium (remember that the sorption capacities
of the boundary layers are assumed to be negligible therefore the
flux into a boundary layer is equal to the flux out of it).

dc1(t)
dt

= SPb

V1
(c(0, t) − c1(t)) (4)

dc2(t)
dt

= SPb

V2
(c(L, t) − c2(t)) (5)

where S is the cross-sectional area, and V1,2 are the volumes of the
corresponding reservoirs.

2.2. Characteristic lengths and times in the system

In the classical analysis, which disregards both the mass-transfer
limitations and the concentration variation in the reservoirs,
there is only one characteristic length in the system, namely, the
thickness of the medium. In our analysis, besides the impact of
mass-transfer limitations, we shall mainly concentrate our atten-
tion on the role of finite volume of the inlet reservoir, while
considering the outlet reservoir infinitely large (as it is mostly the
case in experimental practice; see below for the details). There-
fore, there are three characteristic lengths in the system, namely,
L, De/Pb, and V1/S. The second one is the thickness of a medium
layer whose diffusion permeability would be equal to that of the
boundary layer. The third one is the effective thickness of the inlet
reservoir. The choice of characteristic length (and, accordingly, of
characteristic time), is a matter of convenience and depends on the
emphases of analysis. If we select this characteristic length

lc ≡ De

Pb
(6)

the corresponding characteristic time is

tch ≡ ˛De

P2
b

(7)

This time is needed for the diffusant concentration at the boundary
between the medium and the inlet boundary layer to increase from
the initial value to about half the value in the inlet reservoir in the
particular case of infinitely thick medium and infinitely large inlet
reservoir.

The concentration is scaled on the initial concentration in the
inlet reservoir. In the dimensionless variables, � ≡ x/lc, � ≡ t/tch, Eq.
(1) takes this form:

∂c(�, �)
∂�

= ∂2c(�, �)
∂�2

(8)

The boundary and material balance conditions transform to this:

−∂c(�, �)
∂�

∣∣∣∣
�=0

= c1(�) − c(0, �) (9)

−∂c(�, �)
∂�

∣∣∣∣
�=h

= c(h, �) − c2(�) (10)

dc1(�)
d�

= k1(c(0, �) − c1(�)) (11)

1 Since the sorption capacity of boundary layers is assumed to be negligible, the
concentration profiles inside them are always linear. Therefore, they can be charac-
terized by a single parameter, namely, the diffusion permeability, and their thickness
is formally considered infinitely small.
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