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a b s t r a c t 

Critical path analysis (CPA), originally developed to describe electrical conductance in semiconductors, 

has been shown recently to hold some promise in describing transport properties of porous media. I 

applied some previously developed concepts in CPA and percolation theory to predict permeability in 

a suite of sandstone, carbonate, and clay-rich samples. I assumed that the pore sizes in my samples 

exhibited fractal scaling and expressed the electrical formation factor as a function of porosity using 

universal scaling from percolation theory. The resulting CPA permeability predictions match the measured 

values very well. In addition, I show how considering the scale-dependence of the percolation threshold 

yields two characteristic length scales for transport properties: the critical pore size, and the sample size. 

This work suggests that the CPA framework is appropriate for describing transport properties of natural 

porous media, and provides a theoretical basis for understanding the permeability of tight rocks like shale 

in which laboratory permeability measurements are difficult. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Permeability, an intrinsic property of a porous medium that de- 

scribes the ease with which fluid may be transmitted through the 

medium, is an important parameter to quantify for any applica- 

tion involving fluid flow or pore pressure quantification. The rela- 

tionship between porous medium microstructure and permeability 

has been an area of active research for some time. This relation- 

ship is an important component of predicting permeability from 

other physical properties ( Bear, 1972; Dullien, 1992 ). Such meth- 

ods of permeability prediction are particularly important in low- 

permeability media like shales and tight gas sandstones, in which 

laboratory measurements of permeability are extremely difficult 

and time-consuming (e.g., Cui et al., 2009 ). In idealized porous me- 

dia, permeability may be determined from pore or grain geom- 

etry according to analytical solutions to the Navier-Stokes equa- 

tions (e.g., Dullien, 1992 ; Happel and Brenner, 1983 ). However, nat- 

ural porous media typically exhibit a wide range of pore and grain 

shapes, which makes permeability determination much more dif- 

ficult. Recent work has also demonstrated that permeability may 

be determined by direct numerical simulation of flow in three- 

dimensional digital images of porous media (e.g., Bultreys et al., 

2016 ; Meakin and Tartakovsky, 2009 ). These methods may suf- 
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fer from resolution limits in media with pores smaller than a 

few microns, and computational issues in simulating flow in a 

volume large enough be representative, but do represent a good 

alternative for cross-validation with other methods in most me- 

dia. To overcome the limitations of calculations in idealized media 

without invoking the technological complexity of direct numerical 

simulation, researchers have turned to percolation theory, which 

can allow determination of bulk transport properties from struc- 

tural characteristics of the pore system (e.g., Berkowitz and Bal- 

berg, 1993 ). One particular technique based on percolation the- 

ory, critical path analysis (CPA), has shown promise in determin- 

ing permeability in strongly heterogeneous media like rocks and 

soils in which fluid transport occurs only through a small subset of 

the highest-conductance pores ( Friedman and Seaton, 1998; Hunt, 

2001; Skaggs, 2011 ). 

According to CPA, a heterogeneous porous medium is assumed 

to be composed of flow pathways (pores) with different conduc- 

tances – that is, different abilities to transmit flow. The conduc- 

tance is a function of the pore size, with larger pores having larger 

conductances. Most flow through the medium occurs on high- 

conductance pathways that comprise a fraction of the total vol- 

ume available for flow. The macroscopic flow is therefore dictated 

by the low-conductivity restrictions that occur along these path- 

ways ( Hunt, 2001 ). CPA was originally used to describe electrical 

conductivity in amorphous germanium, silicon, and carbon used 

in semiconductors ( Ambegaokar et al., 1971; Pollak, 1972 ). Subse- 
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quent researchers have applied CPA to both electrical conductiv- 

ity and permeability in natural porous media ( Bernabé and Brud- 

erer, 1998; Charlaix et al., 1986; Charlaix et al., 1987; Friedman 

and Seaton, 1998; Hunt, 2001; Hunt and Gee, 2002; Skaggs, 2011 ). 

According to this application of CPA, conduction (either electrical 

or hydraulic) occurs mainly through the higher-conductivity (i.e., 

larger) pores in the medium. Let f ( r ) be the volumetric probability 

density function of pore sizes in the medium. In cylindrical pores, 

the pore size r represents the pore radius. A critical pore size r c 
may be defined as ∫ ∞ 

r c 

f ( r ) dr = p c , (1) 

where p c is the percolation threshold (fraction of pore volume 

that must be occupied for a sample-spanning, connected cluster 

of pores to form). The critical pore size represents the smallest 

restriction along the sample-spanning cluster (e.g., Robins et al., 

2016 ). The conductance in a pore of size r c is the critical conduc- 

tance g c ( Ambegaokar et al., 1971; Hunt, 2001 ). If p c and f ( r ) are 

known, the permeability may be estimated from the critical hy- 

draulic conductance, but the relationship depends on the size dis- 

tribution and connectivity of the pore system ( Halperin, 1989 ). 

The problem of predicting permeability from the distribution of 

hydraulic conductances may be alleviated by considering electri- 

cal conductance together with hydraulic conductance, as the rela- 

tionship between the macroscopic conductances and the pore-scale 

distribution of conductances is assumed to be the same in both 

cases ( Hunt, 2001; Skaggs, 2011 ). Electrical and hydraulic conduc- 

tances generally exhibit different relationships with pore size, but 

by assuming that hydraulic conductance is described by Poiseuille’s 

law and electrical conductance by Ohm’s law, the ratio of the crit- 

ical electrical and hydraulic conductances ( g e c and g h c ) in a cylindri- 

cal pore is proportional to r c 
2 ( Banavar and Johnson, 1987; Fried- 

man and Seaton, 1998; Hunt, 2001; Skaggs, 2011 ), which provides 

a relationship between permeability and electrical conductivity. 

Based on this proportionality, several CPA-based permeability mod- 

els have been published in the literature that include a relationship 

with electrical conductivity ( Bernabé and Bruderer, 1998; Friedman 

and Seaton, 1998; Hunt, 2001; Le Doussal, 1989; Skaggs, 2011 ), and 

this treatment is consistent with other permeability relationships 

that use electrical conductivity but are not explicitly derived us- 

ing CPA ( Avellaneda and Torquato, 1991; Bernabé and Revil, 1995; 

Daigle and Reece, 2015; Johnson et al., 1986; Katz and Thompson, 

1986; Revil and Cathles, 1999; Revil and Florsch, 2010 ). 

CPA has been shown to be successful in predicting the 

saturation-dependence of permeability in soils ( Ghanbarian- 

Alavijeh and Hunt, 2012a ; Hunt, 2001; Hunt and Gee, 2002 ), but 

its applicability to predicting permeability under fully saturated 

conditions has not been fully tested in laboratory samples. Skaggs 

(2011) summarized the existing doubts about the applicability of 

CPA to porous media as ( 1 ) is the localized transport through 

the largest pores described by Eq. 1 applicable to porous media? 

And ( 2 ) is the significance of the critical pore size due to the 

localized transport predicted by CPA, or merely due to a coinci- 

dental relationship with other length scales? I analyzed experi- 

mental data on Berea sandstone, Racine dolomite, and a suite 13 

of hemipelagic marine mud samples from three boreholes in the 

Nankai Trough offshore Japan, and compared permeability predic- 

tions from CPA with laboratory measurements. I found that CPA 

was able to predict permeability remarkably well over nearly 4 

orders of magnitude by combining the method of Friedman and 

Seaton (1998) , which determines permeability from the ratio g h c / g 
e 
c , 

with a percolation theory-based description of electrical conduc- 

tivity that allows extension of the Friedman and Seaton method to 

media with significant surface conductivity. My results suggest that 

( 1 ) the localized transport prediction of CPA is applicable to natu- 
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Fig. 1. Simple illustration of pore-solid fractal model in two dimensions with 

square pores. The fractal generator is shown at left. Solid material is marked “s”, 

pores are marked “p”, and areas where the generator is to be repeated are marked 

“f”. This generator has β = p/(p + s) = 2/7. The middle panel shows the second iter- 

ation, in which the generator has been repeated in each of the squares marked “f”. 

The panel at right shows the third iteration. 

ral porous media as long as the pore size distribution spans more 

than roughly 2.6 orders of magnitude; ( 2 ) while r c is proportional 

to other important length scales for transport in porous media, r c 
and the size of the medium are the two fundamental length scales 

that describe transport through the pore space; and ( 3 ) considering 

both r c and the size of the medium results in an improved perme- 

ability prediction compared to consideration of r c alone as done in 

previous models (e.g., Katz and Thompson, 1986 ). 

2. Theory 

2.1. Fractal parameterization of the pore size distribution 

In investigations of CPA, authors have used several different 

methods of parameterizing the pore size volumetric probability 

density function, including lognormal, log-uniform, and power-law 

distributions. In the present work I use a fractal description of the 

pore space, which results in a power-law distribution. The descrip- 

tion of the pore space using a fractal model implies that the pore 

system displays statistical self-similarity ( Tyler and Wheatcraft, 

1990 ), which according to Mandelbrot (1967) means “each portion 

can be considered a reduced-scale image of the whole.” My choice 

is informed by the arguments of Hunt, (2001) , Hunt and Gee, 

(2002) , and Sahimi, (1993) , who all presented evidence that pore 

sizes in natural porous media tend to follow fractal scaling with 

finite upper and lower bounds and that the fractal parameteriza- 

tion allows for successful prediction of saturated and unsaturated 

permeability. I use a particular model, the pore-solid fractal (PSF) 

model ( Bird et al., 20 0 0; Perrier et al., 1999 ), whose parameters all 

have a physical interpretation and which has been used to predict 

saturation-dependent permeability in previous work ( Ghanbarian- 

Alavijeh and Hunt, 2012 a). 

The PSF model considers the porous medium to be composed 

of three components: pores, solids, and volume in which the frac- 

tal generator is replicated iteratively ( Fig. 1 ). The following deriva- 

tion is given in Hunt and Gee, (2002) and Ghanbarian-Alavijeh and 

Hunt, (2012a) , and previous work (e.g., Bird et al., 20 0 0 ; Fisher, 

1971 ; Ghanbarian-Alavijeh and Hunt, 2012a ) has shown its appli- 

cability to cylindrical pores. If the cumulative distribution of pore 

sizes follows N ( < r ) ∼ r −D where N ( < r ) is the number fraction of 

pores smaller than size r and D is the fractal dimension, in three 

dimensions, the PSF model expresses the volumetric probability 

density function f ( r ) as 

f ( r ) = 

β

φ

3 − D 

r 3 −D 
max 

r 2 −D , (2) 

where � is porosity, r max is the largest pore size in the medium, 

and β is the ratio of pore volume to the sum of the pore and solid 

volumes in the fractal model ( Fig. 1 ); note that β ≥ φ because β
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