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a b s t r a c t 

Probability density function (PDF) methods are a promising alternative to predicting the transport of so- 

lutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the 

mean concentration and the concentration variance, used in moment methods. The mixing model, de- 

scribing the transport of the PDF in concentration space, is essential for both methods. Finding a satis- 

factory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult 

undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing 

model. This connection is used to find and test an improved mixing model for the much easier to handle 

concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. 

The newly proposed mixing model yields significantly improved results for both variance modelling and 

PDF modelling. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Predicting the transport of groundwater contaminants remains 

a demanding task, especially with respect to the heterogeneity 

of the subsurface, the large measurement uncertainties, and the 

increasing impact of human activities on groundwater systems 

( WWAP, 2012 ). Hence, a risk analysis also includes the quantifica- 

tion of the uncertainty in order to evaluate how accurate the pre- 

dictions are. 

It is well known from papers published in the last decades that 

a major source of uncertainty associated with predicting contam- 

inant concentrations is the lack of detailed information about the 

spatial heterogeneity of the hydraulic conductivity in the subsur- 

face (see e.g. Burr et al., 1994; Gelhar and Axness, 1983 ). A long 

standing approach to deal with this uncertainty is the stochas- 

tic parameterisation of the hydraulic conductivity through random 

space functions with statistics inferred from field and laboratory 

data. Via flow and transport equations, the contaminant concen- 

trations being modelled are random functions too. Their statistics 

may be inferred from Monte Carlo ensembles of transport simula- 

tions, done for realisations of the random hydraulic conductivity, 

by stochastic perturbation approaches, or by the probability den- 
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sity function (PDF) method, which received an increased attention 

during the last decade ( Suciu et al., 2016 ). 

The moment approach uses transport equations of the concen- 

tration moments consistent with the geostatistical representation 

of the aquifer’s heterogeneity. If this heterogeneity is statistically 

homogeneous, the equation for the first moment, which is the 

mean concentration, has the following characteristics: The highly 

heterogeneous and spatially fluctuating groundwater velocity is re- 

placed by an ensemble averaged velocity field and the effect of the 

fluctuating velocity on the transport is modelled by an enhanced 

dispersion called macrodispersion or ensemble dispersion ( Gelhar 

and Axness, 1983 ). But in general, the mean behaviour differs from 

that of a specific plume in a single aquifer. See Fig. 1 for a compari- 

son between the mean concentration and a concentration obtained 

from a simulation in a specific velocity field realisation. Only if the 

hydraulic conductivity has finite correlation lengths and the plume 

has sampled a representative part of the aquifer, it becomes er- 

godic and its transport behaviour can be modelled by the ensem- 

ble averaged behaviour, described above. In a first step, possible 

deviations from the mean behaviour can be quantified by the con- 

centration variance. It is transported by the same processes as the 

mean concentration, thus it is advected by the averaged velocity 

field and dispersed by an enhanced macrodispersion. But concen- 

tration variance is also generated by mean concentration gradients 

and simultaneously it is destroyed by dissipative processes, which 
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Fig. 1. A measure is needed to quantify how good the mean concentration 〈 C 〉 ap- 

proximates the actual concentration C , since the difference can be significant. 

are created by small-scale fluctuations in the velocity field. In or- 

der to calculate the influence of these small-scale fluctuations on 

the concentration variance, a so-called closure model is needed. 

In the field of turbulence modelling, where very similar trans- 

port equations are used, different approaches exist for such clo- 

sure models (e.g. Tennekes and Lumley, 1972 ). Up to this point, the 

adoption of these approaches to groundwater transport modelling 

has been hampered by the vastly different flow conditions preva- 

lent in both fields. Contrary to most other problems where turbu- 

lent flows are more challenging, the roles are reversed here. The 

strong mixing induced by turbulent flows causes this closure prob- 

lem to be easier to tackle. The mixing induced by heterogeneities 

in the groundwater flow is slower and changes significantly in time 

and is therefore more difficult to model. Dentz et al. (20 0 0) have 

shown, the mechanism which generates the physical mixing in a 

given aquifer realisation is more reliably described by the effective 

dispersion coefficients in comparison to the ensemble dispersion 

coefficients, which correspond to the turbulent diffusion coeffi- 

cients. The effective dispersion is small at early times and increases 

only slowly with time. Therefore, concentration gradients at early 

times are steep and may remain steep for prolonged times, which 

in turn prevents the smoothing of concentration fluctuations and 

preserves concentration uncertainty. Andri ̌cevi ́c (1998) proposed a 

mixing mechanism based on a time variable effective length scale 

which, in principle, could be determined experimentally. Kapoor 

and Gelhar (1994a , 1994b) derived a transport equation for the 

concentration variance, including local dispersivity and macrodis- 

persive transport. By neglecting the local dispersivity, the results 

from Dagan (1982) could be derived. But it was concluded that 

even very small local dispersivities create a qualitatively different 

behaviour compared to the zero local dispersivity case, as the local 

dispersivity is the only mechanism which can reduce the variance. 

They used an approach developed for turbulent flows to model the 

variance dissipation, created by the local dispersivity. Furthermore, 

analytical solutions for the long-time behaviour of the concentra- 

tion variance were derived. These results were confirmed for glob- 

ally integrated variances by numerical simulations ( Kapoor and Ki- 

tanidis, 1997 ). 

If the predictions made by a contaminant transport model are 

to be used for risk analysis, even more information than the mean 

concentration and the variance is needed. Risk thresholds, regu- 

lated e.g. by an environmental agency ( WWAP, 2012 ), can only be 

factored in by the so-called exceedance probability (e.g. Andri ̌cevi ́c 

and Cvetkovi ́c, 1996 ). It depends on the complete one-point proba- 

bility density function (PDF) of the concentration. The concentra- 

tion variance, as discussed above, can only be used to calculate 

a first estimation of the exceedance probability ( de Barros et al., 

2011 ). Even if such estimation would be an acceptable approxima- 

tion, rare events or extreme values cannot be mapped by the mean 

concentration and the concentration variance alone. This limita- 

tion stems from the fact that by using only the first two statisti- 

cal moments, namely the mean and the variance, a Gaussian shape 

for the concentration PDF is implied. Such a distribution is short- 

tailed and therefore excludes the possibility of rare events. Yee 

and Chan (1997) analysed a large set of experimental data from 

tracer tests in the turbulent atmosphere. From this analysis they 

identified a collapse of higher-order concentration moments, which 

means that the higher-order moments can be expressed through 

lower-order moments. Srzic et al. (2013a ) applied such an analysis 

to the transport of solutes in groundwater and also found a col- 

lapse. This might be a promising way of computing the concentra- 

tion PDF from the mean concentration and the concentration vari- 

ance. 

The first studies applying such a PDF framework to the trans- 

port in groundwater used a β distribution, fully characterised 

by two parameters, to fit the concentration PDF in a non- 

Gaussian way ( Fiori, 2001; Fiorotto and Caroni, 2002 ). Cirpka et al. 

(2008) extended the assumption of a β-shaped PDF to some spe- 

cial cases of reactive transport by mapping the statistics of con- 

servative transport to those of mixing-controlled reactions. Srzic 

et al. (2013b ) concluded that β-shaped PDF’s only match the 

true PDF for low heterogeneities. By strictly assuming a multi- 

variate Gaussian random velocity field and by assuming that the 

PDF of the centre of mass of the solute is also Gaussian, ( Dentz 

and Tartakovsky, 2010 ) derived a formula for the concentration 

PDF without need to solve a PDF evolution equation. Their ap- 

proach consists of mapping the PDF of the random centre of 

mass of the plume, assumed to be Gaussian, onto the concen- 

tration PDF. A similar approach, using a stream function coordi- 

nate system, was further developed by Cirpka et al. (2011) . A “La- 

grangian concentration” framework for calculating the integrated 

PDF, the cumulative distribution function (CDF), was presented by 

de Barros and Fiori (2014) . They derived a semi-analytical equa- 

tion for the concentration CDF by assuming a small plume size 

and a normally distributed and statistically stationary conductiv- 

ity field with low to mild heterogeneity. Compared to the β- 

CDF, both models perform similar. A review on assumed β-PDFs 

and mapping random variable approaches is given by Fiori et al. 

(2015) . 

A more flexible approach - the PDF method - is investigated in 

this study. This approach yields an equation for the whole PDF of 

the concentration and thus makes no assumptions about the shape 

of it. Another major advantage of the PDF approach is the possibil- 

ity to include mass transfer, like chemical reactions or radioactive 

decay, even in case of nonlinear reactions. This intriguing property 

of the PDF approach is possible by assuming that the mass transfer 

solely depends on the concentration ( Fox, 2003; Pope, 1985; Suciu 

et al., 2015b ). The crux of these PDF methods is finding a mixing 

model which describes the transport of the PDF in the concentra- 

tion space. We refer to Celis and Figueira da Silva (2015) for a re- 

cent review of mixing models. 

The term “mixing” will be used from now on with a precise 

meaning, as in turbulence literature ( Celis and Figueira da Silva, 

2015 ), which, although related, is different from its meaning in 

stochastic sub-surface hydrology, where it is associated with the 

effective dispersion coefficient ( Dentz et al., 20 0 0 ). The latter is the 

diffusion coefficient of the stochastic process modelling the trans- 

port, centred on the actual plume centre of mass. It differs from 

the diffusion coefficient of the process centred on the centre of 

mass averaged over the ensemble of velocity realisations, i.e. the 

ensemble dispersion coefficient describing the spreading of the so- 

lute plume ( Dentz et al., 20 0 0 ), by the diffusion coefficient of the 
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