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Probability density function (PDF) methods are a promising alternative to predicting the transport of so-
lutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the
mean concentration and the concentration variance, used in moment methods. The mixing model, de-
scribing the transport of the PDF in concentration space, is essential for both methods. Finding a satis-
factory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult
undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing
model. This connection is used to find and test an improved mixing model for the much easier to handle
concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested.
The newly proposed mixing model yields significantly improved results for both variance modelling and
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1. Introduction

Predicting the transport of groundwater contaminants remains
a demanding task, especially with respect to the heterogeneity
of the subsurface, the large measurement uncertainties, and the
increasing impact of human activities on groundwater systems
(WWAP, 2012). Hence, a risk analysis also includes the quantifica-
tion of the uncertainty in order to evaluate how accurate the pre-
dictions are.

It is well known from papers published in the last decades that
a major source of uncertainty associated with predicting contam-
inant concentrations is the lack of detailed information about the
spatial heterogeneity of the hydraulic conductivity in the subsur-
face (see e.g. Burr et al,, 1994; Gelhar and Axness, 1983). A long
standing approach to deal with this uncertainty is the stochas-
tic parameterisation of the hydraulic conductivity through random
space functions with statistics inferred from field and laboratory
data. Via flow and transport equations, the contaminant concen-
trations being modelled are random functions too. Their statistics
may be inferred from Monte Carlo ensembles of transport simula-
tions, done for realisations of the random hydraulic conductivity,
by stochastic perturbation approaches, or by the probability den-
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sity function (PDF) method, which received an increased attention
during the last decade (Suciu et al., 2016).

The moment approach uses transport equations of the concen-
tration moments consistent with the geostatistical representation
of the aquifer’s heterogeneity. If this heterogeneity is statistically
homogeneous, the equation for the first moment, which is the
mean concentration, has the following characteristics: The highly
heterogeneous and spatially fluctuating groundwater velocity is re-
placed by an ensemble averaged velocity field and the effect of the
fluctuating velocity on the transport is modelled by an enhanced
dispersion called macrodispersion or ensemble dispersion (Gelhar
and Axness, 1983). But in general, the mean behaviour differs from
that of a specific plume in a single aquifer. See Fig. 1 for a compari-
son between the mean concentration and a concentration obtained
from a simulation in a specific velocity field realisation. Only if the
hydraulic conductivity has finite correlation lengths and the plume
has sampled a representative part of the aquifer, it becomes er-
godic and its transport behaviour can be modelled by the ensem-
ble averaged behaviour, described above. In a first step, possible
deviations from the mean behaviour can be quantified by the con-
centration variance. It is transported by the same processes as the
mean concentration, thus it is advected by the averaged velocity
field and dispersed by an enhanced macrodispersion. But concen-
tration variance is also generated by mean concentration gradients
and simultaneously it is destroyed by dissipative processes, which
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Fig. 1. A measure is needed to quantify how good the mean concentration (C) ap-
proximates the actual concentration C, since the difference can be significant.

are created by small-scale fluctuations in the velocity field. In or-
der to calculate the influence of these small-scale fluctuations on
the concentration variance, a so-called closure model is needed.

In the field of turbulence modelling, where very similar trans-
port equations are used, different approaches exist for such clo-
sure models (e.g. Tennekes and Lumley, 1972). Up to this point, the
adoption of these approaches to groundwater transport modelling
has been hampered by the vastly different flow conditions preva-
lent in both fields. Contrary to most other problems where turbu-
lent flows are more challenging, the roles are reversed here. The
strong mixing induced by turbulent flows causes this closure prob-
lem to be easier to tackle. The mixing induced by heterogeneities
in the groundwater flow is slower and changes significantly in time
and is therefore more difficult to model. Dentz et al. (2000) have
shown, the mechanism which generates the physical mixing in a
given aquifer realisation is more reliably described by the effective
dispersion coefficients in comparison to the ensemble dispersion
coefficients, which correspond to the turbulent diffusion coeffi-
cients. The effective dispersion is small at early times and increases
only slowly with time. Therefore, concentration gradients at early
times are steep and may remain steep for prolonged times, which
in turn prevents the smoothing of concentration fluctuations and
preserves concentration uncertainty. Andricevic (1998) proposed a
mixing mechanism based on a time variable effective length scale
which, in principle, could be determined experimentally. Kapoor
and Gelhar (1994a, 1994b) derived a transport equation for the
concentration variance, including local dispersivity and macrodis-
persive transport. By neglecting the local dispersivity, the results
from Dagan (1982) could be derived. But it was concluded that
even very small local dispersivities create a qualitatively different
behaviour compared to the zero local dispersivity case, as the local
dispersivity is the only mechanism which can reduce the variance.
They used an approach developed for turbulent flows to model the
variance dissipation, created by the local dispersivity. Furthermore,
analytical solutions for the long-time behaviour of the concentra-
tion variance were derived. These results were confirmed for glob-
ally integrated variances by numerical simulations (Kapoor and Ki-
tanidis, 1997).

If the predictions made by a contaminant transport model are
to be used for risk analysis, even more information than the mean
concentration and the variance is needed. Risk thresholds, regu-
lated e.g. by an environmental agency (WWAP, 2012), can only be
factored in by the so-called exceedance probability (e.g. Andricevic
and Cvetkovic, 1996). It depends on the complete one-point proba-
bility density function (PDF) of the concentration. The concentra-
tion variance, as discussed above, can only be used to calculate

a first estimation of the exceedance probability (de Barros et al.,
2011). Even if such estimation would be an acceptable approxima-
tion, rare events or extreme values cannot be mapped by the mean
concentration and the concentration variance alone. This limita-
tion stems from the fact that by using only the first two statisti-
cal moments, namely the mean and the variance, a Gaussian shape
for the concentration PDF is implied. Such a distribution is short-
tailed and therefore excludes the possibility of rare events. Yee
and Chan (1997) analysed a large set of experimental data from
tracer tests in the turbulent atmosphere. From this analysis they
identified a collapse of higher-order concentration moments, which
means that the higher-order moments can be expressed through
lower-order moments. Srzic et al. (2013a) applied such an analysis
to the transport of solutes in groundwater and also found a col-
lapse. This might be a promising way of computing the concentra-
tion PDF from the mean concentration and the concentration vari-
ance.

The first studies applying such a PDF framework to the trans-
port in groundwater used a B distribution, fully characterised
by two parameters, to fit the concentration PDF in a non-
Gaussian way (Fiori, 2001; Fiorotto and Caroni, 2002). Cirpka et al.
(2008) extended the assumption of a B-shaped PDF to some spe-
cial cases of reactive transport by mapping the statistics of con-
servative transport to those of mixing-controlled reactions. Srzic
et al. (2013b) concluded that B-shaped PDF's only match the
true PDF for low heterogeneities. By strictly assuming a multi-
variate Gaussian random velocity field and by assuming that the
PDF of the centre of mass of the solute is also Gaussian, (Dentz
and Tartakovsky, 2010) derived a formula for the concentration
PDF without need to solve a PDF evolution equation. Their ap-
proach consists of mapping the PDF of the random centre of
mass of the plume, assumed to be Gaussian, onto the concen-
tration PDF. A similar approach, using a stream function coordi-
nate system, was further developed by Cirpka et al. (2011). A “La-
grangian concentration” framework for calculating the integrated
PDF, the cumulative distribution function (CDF), was presented by
de Barros and Fiori (2014). They derived a semi-analytical equa-
tion for the concentration CDF by assuming a small plume size
and a normally distributed and statistically stationary conductiv-
ity field with low to mild heterogeneity. Compared to the f-
CDF, both models perform similar. A review on assumed S-PDFs
and mapping random variable approaches is given by Fiori et al.
(2015).

A more flexible approach - the PDF method - is investigated in
this study. This approach yields an equation for the whole PDF of
the concentration and thus makes no assumptions about the shape
of it. Another major advantage of the PDF approach is the possibil-
ity to include mass transfer, like chemical reactions or radioactive
decay, even in case of nonlinear reactions. This intriguing property
of the PDF approach is possible by assuming that the mass transfer
solely depends on the concentration (Fox, 2003; Pope, 1985; Suciu
et al., 2015b). The crux of these PDF methods is finding a mixing
model which describes the transport of the PDF in the concentra-
tion space. We refer to Celis and Figueira da Silva (2015) for a re-
cent review of mixing models.

The term “mixing” will be used from now on with a precise
meaning, as in turbulence literature (Celis and Figueira da Silva,
2015), which, although related, is different from its meaning in
stochastic sub-surface hydrology, where it is associated with the
effective dispersion coefficient (Dentz et al., 2000). The latter is the
diffusion coefficient of the stochastic process modelling the trans-
port, centred on the actual plume centre of mass. It differs from
the diffusion coefficient of the process centred on the centre of
mass averaged over the ensemble of velocity realisations, i.e. the
ensemble dispersion coefficient describing the spreading of the so-
lute plume (Dentz et al., 2000), by the diffusion coefficient of the
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