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a b s t r a c t 

While the value of correcting raw radar rainfall estimates using simultaneous ground rainfall observa- 

tions is well known, approaches that use the complete record of both gauge and radar measurements to 

provide improved rainfall estimates are much less common. We present here two new approaches for 

estimating radar rainfall that are designed to address known limitations in radar rainfall products by us- 

ing a relatively long history of radar reflectivity and ground rainfall observations. The first of these two 

approaches is a radar rainfall estimation algorithm that is nonparametric by construction. Compared to 

the traditional gauge adjusted parametric relationship between reflectivity (Z) and ground rainfall (R), the 

suggested new approach is based on a nonparametric radar rainfall estimation method (NPR) derived us- 

ing the conditional probability distribution of reflectivity and gauge rainfall. The NPR method is applied 

to the densely gauged Sydney Terrey Hills radar network, where it reduces the RMSE in rainfall esti- 

mates by 10%, with improvements observed at 90% of the gauges. The second of the two approaches is a 

method to merge radar and spatially interpolated gauge measurements. The two sources of information 

are combined using a dynamic combinatorial algorithm with weights that vary in both space and time. 

The weight for any specific period is calculated based on the error covariance matrix that is formulated 

from the radar and spatially interpolated rainfall errors of similar reflectivity periods in a cross-validation 

setting. The combination method reduces the RMSE by about 20% compared to the traditional Z-R re- 

lationship method, and improves estimates compared to spatially interpolated point measurements in 

sparsely gauged areas. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Accurate rainfall estimates are of great importance in hydrology. 

Rain gauges and weather radars are the two most widely used sen- 

sors for rainfall measurement ( Severino and Alpuim, 2005 ; Habib 

et al., 2001 ; Berne et al., 2005 ). Rain gauges are a simple and cheap 

technology providing relatively accurate measurements at a point 

location. In contrast, weather radars provide estimations of rainfall 

over large geographic areas with the benefit of repeated measure- 

ments at high frequency ( García-Pintado et al., 2009 ). Radar mea- 

sures the strength of electromagnetic waves backscattered by the 

atmosphere, termed as ‘Reflectivity’ . Conventionally, a power law 

relationship often referred to as the Z-R relationship ( Z = AR b ) is 
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used to relate the radar reflectivities (Z) to ground rainfall rates (R) 

( Krajewski and Smith, 2002 ; Mapiam et al., 2009 ). In most situa- 

tions, the process of radar rainfall estimation involves (1) the mea- 

surement of reflectivity, (2) the removal of errors caused during 

its measurement, (3) the conversion of estimated reflectivity into 

rainfall, and 4) an adjustment depending on gauge rainfall mea- 

surements ( Chumchean et al., 2006a ). Uncertainties are associated 

with each of these steps. In practice, when considering long dura- 

tion rainfall periods and/or multiple storm types, steps (1) and (2) 

can be affected by phenomena such as ground clutter, beam block- 

age, anomalous propagation, hail, bright band, attenuation, range- 

dependent bias, range degradation, vertical profile of reflectivity, 

temporal and spatial sampling errors (Chumchean et al., 2006; 

Villarini and Krajewski, 2010 ). There are also errors introduced by 

rainfall variability and precipitation drift as well as the uncertain- 

ties of relating point rainfall measurements to radar measurements 

across a gridded domain. Our aim is to address the uncertain- 

ties in converting the radar reflectivity to rainfall rates that have 

http://dx.doi.org/10.1016/j.advwatres.2016.09.011 
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hampered the widespread use of radars in hydrology ( Villarini and 

Krajewski, 2010 ). 

It has been shown that improved rainfall estimates can be 

achieved through a combination of radar and gauge measurements 

by exploiting their strengths and correcting for their shortcomings 

( Schiemann et al., 2011 ; Burlando et al., 1996 ; Krajewski, 1987 ). 

This paper proposes two innovative methods for improving radar 

rainfall estimation by combining gauge and radar measurements. 

The idea of merging radar and gauge measurement is not new 

and a number of different methods have been developed. Previ- 

ous studies were mostly concerned about the application of gauge 

data for correcting systematic errors in radar rainfall estimates. The 

most common application is Mean Field Bias (MFB) correction of 

radar rainfall estimates ( Chumchean et al., 2006a ; Seo, 1998 ). It 

considers a multiplicative adjustment factor estimated as the ra- 

tio of the accumulated radar rainfall and the accumulated gauge 

rainfall ( Kitzmiller et al., 2013 ). Though MFB correction improves 

radar data quality ( Rabiei and Haberlandt, 2015 ), it is known to 

underestimate rainfall in some situations (Chumchean et al., 2006). 

Seo and Breidenbach (2002 ) suggest a method to correct spatially 

varying non-uniform bias in radar estimates by considering a small 

bin within the radar domain. The authors termed this method as 

a local bias correction method where locally varying bias is cor- 

rected instead of MFB ( Seo et al., 2003 ). Based on the number of 

rain gauges and their distance from the radar, Chumchean et al. 

(2006a) present a method to update the current MFB estimate by 

applying a Kalman filter. 

The application of bias correction depends mostly on the avail- 

ability and quality of gauge data ( Seo et al., 2003 ). In real time, 

the number of rain gauges available are often very small. There- 

fore, spatial averaging with gauged locations is required to apply 

this method to the ungauged region ( Seo and Breidenbach, 2002 ; 

Steiner et al., 1999 ; Smith and Krajewski, 1991 ). Several radar and 

gauge merging methods have been proposed, such as ordinary 

kriging, cokriging, kriging with external drift (KED) ( Berndt et al., 

2014 ; Velasco-Forero et al., 2009 ; Sideris et al., 2014 ; Creutin et 

al., 1988 ), kriging with radar error (KRE) (also known as condi- 

tional merging) ( Sinclair and Pegram, 2005 ) and wavelet analy- 

sis ( Kalinga and Gan, 2012 ). Among all tested kriging techniques, 

KED often yields the best results ( Haberlandt, 2007 ; Delrieu et 

al., 2014 ; Jewell and Gaussiat, 2015 ). The common assumption in 

all these techniques is that the gauge rainfall is the primary true 

source and the radar data is auxiliary information that can be 

used to improve the spatial interpolation ( Rabiei and Haberlandt, 

2015 ; Goudenhoofdt and Delobbe, 2009 ). This assumption is gen- 

erally required because of the uncertainties and errors that result 

from converting the radar reflectivity to rainfall intensity. It is com- 

monly accepted that the most useful information from the radar is 

the spatial pattern of the rainfall intensity rather than its magni- 

tude ( Méndez-Antonio et al., 2009 ). Rain gauges are more accurate, 

but conversely their measurements are only representative of a 

very small area ( Goudenhoofdt and Delobbe, 2009 ; Martens et al., 

2013 ). Furthermore, even if there are uncertainties in radar rain- 

fall estimates, it does contain useful information about the tem- 

poral distribution of rainfall ( Martens et al., 2013 ; Shucksmith et 

al., 2011 ). In this paper, we argue that if the errors in the rainfall 

field derived from gauges and radar can be accurately quantified, 

this information can be used to efficiently combine the two prod- 

ucts without discarding the intensity information from the radar. 

This paper presents a method for combining spatially interpolated 

gauge rainfall with a radar rainfall estimate. Such combination is 

accomplished without making assumptions on the relationship be- 

tween radar reflectivity and gauge rainfall. Furthermore, it consid- 

ers the dependence between the radar and gauge estimates and 

thereby shows improvement over either the radar or gauge esti- 

mates taken individually. 

In merging the radar and gauge products, there are parallels 

with recent work in combining multiple climate models or sea- 

sonal forecasts ( Chowdhury and Sharma, 2009 ). One of the im- 

portant findings from these studies is that dynamic weighting 

of the models (i.e. where the combination weights change with 

time) provides superior performance compared to static weighting 

schemes ( Chowdhury and Sharma, 2010 ; Devineni and Sankara- 

subramanian, 2010 ). We therefore propose dynamic weighting to 

merge the radar and gauge data, which to our knowledge is a new 

contribution to the field. Dynamic weighting requires estimates of 

the error in each of the models at every location and every time 

step. The proposed method weights two different sources of infor- 

mation (radar and gauge estimates) based on their temporal dis- 

tribution of errors without giving priority to one over another. We 

therefore propose an improved radar-rainfall relationship that cal- 

culates the uncertainties for different rainfall intensities. 

Radar-rainfall relationships are very complex. The Z-R relation- 

ship depends on the drop size distribution of the rainfall as well as 

the rainfall regime and geographical location ( Lee and Zawadzki, 

2005 ; Steiner et al., 2004 ; Hazenberg et al., 2011 ). For example, 

Marshall and Palmer ( Marshall and Palmer, 1948 ) found that, the- 

oretically, reflectivity and rainfall intensity should be proportional 

to the 6th and 3.7th moments of the raindrop diameter respec- 

tively. Hence, radar reflectivity is more sensitive to rain drop di- 

ameter than to rainfall rate. Moreover, it has been observed that 

the Z-R relationship can be non-injective, such that a reflectivity 

value can correspond to samples having different drop size dis- 

tributions and rainfall intensities ( Ochou et al., 2011 ; Uijlenhoet, 

2001 ). While DSDs obtained by disdrometers can be used for ob- 

taining the Z-R relationship ( Prat and Barros, 2009 ; Verrier et al., 

2013 ), these measurements are not available in many parts of the 

world ( Mapiam et al., 2009 ; Hasan et al., 2014 ) and statistical cal- 

ibration of the Z-R relationship is required. The commonly used 

power-law, with only two free parameters (A and b), is unable to 

capture this complexity. To circumvent this limitation and make 

the best use of available records of radar reflectivity and ground 

rainfall, we propose a nonparametric method to model the full 

complexity of the Z-R relationship. 

Nonparametric methods have been found to be efficient in a 

number of hydrologic applications including streamflow simula- 

tion ( Sharma et al., 1997 ; Sharma and O’Neill, 2002 ) and synthetic 

rainfall generation ( Oriani et al., 2014 ). Villarini et al. ( Villarini et 

al., 2008 ) calculated nonparametric radar rainfall uncertainties in 

a study involving a dense gauge network and radar measurements. 

They formed a conditional expectation function to estimate the ex- 

pected areal averaged ground rainfall for a given radar rainfall es- 

timate. It was found that the nonparametric approach had sim- 

ilar performance to copula-regression estimates with the advan- 

tage of being able to better adapt to local variations in the data. A 

downside is the sensitivity to outliers, particularly at the smallest 

timescales (5–60 min) where there was a lot of variability in the 

data. A nonparametric method for converting radar reflectivity into 

rainfall was proposed by Calheiros and Zawadzki (1987 ). It assumes 

the same probability for gauge measured rainfall and radar-derived 

estimates ( Rosenfeld et al., 1993 ; Seed et al., 1996 ). This proba- 

bility matching method (PMM) overcomes limitations related to 

the sampling volume. In addition, PMM also eliminates collocation 

and timing errors because it does not consider the actual timing 

when the Z-R pair occurred ( Piman et al., 2007 ). Later, the Win- 

dow Probability Matching Method (WPMM) ( Rosenfeld et al., 1994 ) 

was developed, which alleviates limitations of the PMM method 

by considering homogeneous rainfall regions. In the WPMM, the 

probability distribution of reflectivity is matched with gauge rain- 

fall over small spatial extents and time windows. Finally, the Win- 

dow Correlation Matching Method (WCMM) ( Piman et al., 2007 ) 

was developed by introducing a space window to correct timing 
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