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a b s t r a c t 

In general, analytical solutions serve a useful purpose to obtain better insights and to verify numerical 

codes. For flow of two incompressible and immiscible phases in homogeneous porous media without 

gravity, one such method that neglects capillary pressure in the solution was first developed by Buckley 

and Leverett (1942). Subsequently, McWhorter and Sunada (1990) derived an exact solution for the one 

and two dimensional cases that factored in capillary effects. This solution used a similarity transform 

that allowed to reduce the governing equations into a single ordinary differential equation (ODE) that 

can be further integrated into an equivalent integral equation. We present a revision to McWhorter and 

Sunada solution by extending the self-similar solution into a general multidimensional space. Inspired by 

the derivation proposed by McWhorter and Sunada (1990), we integrate the resulting ODE in the third 

and higher dimensions into a new integral equation that can be subsequently solved iteratively by means 

of numerical integration. We developed implementations of the iterative schemes for one- and higher 

dimensional cases that can be accessed online on the authors’ website. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Development of complex mathematical models of two-phase 

flow in porous media such as those described by Fu ̌cík and 

Mikyška [9,10] and Petri et al. [17] often requires versatile bench- 

mark solutions that allow to verify numerical convergence and 

estimate the accuracy of the numerical method. A simplification 

of the domain geometry, system properties or parameters, and 

boundary conditions allows to derive exact (analytical or semi- 

analytical) solutions for the displacement of two incompressible 

and immiscible phases within a homogeneous or a layered het- 

erogeneous porous medium [4,5,12] . These exact solutions not 

only serve as benchmark solutions, but also as effective tools 

to study fundamental displacement processes. A number of re- 

searchers have investigated exact solutions for cases where the 

gravity and/or capillarity are neglected and the exact solution of 

the governing equations is obtained in a form of a traveling wave 

such as the well-known Buckley and Leverett one dimensional an- 

alytical solution [2] , generalization of the Buckley and Leverett so- 
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lution by van Duijn et al. [6] , or the relatively recent approach pre- 

sented by Mathias et al. [14] . 

When the capillary effects are important, the exact solution can 

be found in the form of a self-similar solution as shown by Chen 

[3] , McWhorter and Sunada [15] , Sander et al. [19] , Fu ̌cík et al. [11] , 

Bjørnarå and Mathias [1] for a homogeneous porous medium and 

by van Duijn et al. [4] , van Duijn and de Neef [5] , Fu ̌cík et al. [12] 

for a porous medium with a single material discontinuity. For a 

particular functional choice of the capillary diffusion coefficient 

that allows to reduce the system of governing equations to the 

first integral, a d -dimensional exact solution can be obtained as re- 

ported previously by Sander et al. [18] and Weeks et al. [21] . 

This paper focuses on the self-similar solution in a homoge- 

neous porous medium without gravity that was originally pub- 

lished by McWhorter and Sunada [15] and generalize its deriva- 

tion to a d -dimensional space where d ∈ N . This includes the self- 

similar solution for d = 3 that to the best of our knowledge has 

not been published in the literature and will have important prac- 

tical applications in the analysis of three-dimensional numerical 

schemes such as convergence verification and/or estimation of the 

order of convergence. Even though this solution assumes the zero 

gravity condition that may not be realistic in three-dimensional 

groundwater flow, a practical application that is of relevance is in 
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flow simulations in space. Such an application for plant irrigation 

in micro–gravity was discussed by Scovazzo et al. [20] . 

Note that in the one dimensional case, unidirectional or 

counter-current flows can be considered [11,12,15] , but in two and 

higher dimensional spaces, the self-similar solution can be de- 

rived for the unidirectional displacement only [3,15] . The main 

idea behind the derivation of the self-similar solution is to use a 

similarity substitution to transform the governing two-phase flow 

equations into a single ordinary differential equation (ODE) in the 

d -dimensional spherical coordinates. The resulting ODE is either 

solved directly as proposed by Bjørnarå and Mathias [1] for d = 1 , 

or transformed into an equivalent integral equation that can be 

solved iteratively by means of numerical integration [15] for d = 

1 , 2 . We show that the derivation of the self-similar solution can 

be done in a general way regardless of the choice of d ∈ N . For 

d ≥ 3, we transform the resulting ODE into a new, general inte- 

gral equation for which we propose a fast and efficient iterative 

solution. 

The paper is organized in the following way. First, we briefly 

present the mathematical model and describe its transformation 

into the multidimensional spherical coordinates. In Section 3 , we 

discuss the similarity transform of the governing equations into a 

single ODE and we highlight the important mathematical aspects 

of the transform that have been omitted previously in the litera- 

ture but are essential in the further derivation of the self-similar 

solution. Then in Section 4 , we present the integral approach of 

solving the ODE for a general dimension d ≥ 3. In the final sec- 

tion, we present several typical self-similar solutions and discuss 

the applicability of the computational method with respect to the 

magnitude of the injection rate and the initial saturation. 

2. Governing equations 

2.1. Two-phase flow equations 

We consider incompressible and immiscible flow of two phases 

in a homogeneous and rigid porous medium without gravity in 

a d -dimensional space R 

d , d ∈ N . The wetting and non-wetting 

phases are indexed by w and n , respectively. 

The continuity equation for the phase α ∈ { w, n } is given by 

φ
∂S α

∂t 
+ ∇ · � v α = 0 , (1) 

where φ [ −] is the porosity, S α [ −] is the α-phase volumetric sat- 

uration, and 

�
 v α [ LT −1 ] is the Darcy velocity of the phase α given 

by 

�
 v α = −k r,α

μα
k ∇p α, (2) 

where k [ L 2 ] is the intrinsic permeability and k r,α [ −] , 

μα [ ML −1 T −1 ] , and p α [ ML −1 T −2 ] are the relative permeabil- 

ity, dynamic viscosity, and pressure of the phase α, respectively. 

By definition, S w 

+ S n = 1 . 

The Eqs. (1) and (2) can be combined to express the wetting 

phase velocity as 

�
 v w 

= f (S w 

) � v T − D (S w 

) ∇S w 

, (3) 

where � v T [ LT −1 ] denotes the total velocity defined by � v T = 

�
 v w 

+ 

�
 v n , 

f [ −] is the wetting-phase fractional flow function defined by 

f (S w 

) = 

k r,w (S w ) 
μw 

k r,w (S w ) 
μw 

+ 

k r,n (S w ) 
μn 

, (4) 

and D [ L 2 T −1 ] is the capillary diffusion function given by 

D (S w 

) = −k 

k r,w (S w ) 
μw 

k r,n (S w ) 
μn 

k r,w (S w ) 
μw 

+ 

k r,n (S w ) 
μn 

p ′ c (S w 

) , (5) 

where p c [ ML −1 T −2 ] is the capillary pressure defined by p c = p n −
p w 

and p ′ c denotes its first derivative with respect to S w 

. In this 

work, we consider the following empirical models for the S w 

- 

dependent functions 

k r,w 

(S w 

) = S 
1 
2 
e 

(
1 −

(
1 − S 

1 
m 
e 

)m 

)2 

, 

k r,n (S w 

) = (1 − S e ) 
1 
3 

(
1 − S 

1 
m 
e 

)2 m 

, (6a) 

[16] and 

p c (S w 

) = P 0 

(
S 

− 1 
m 

e − 1 

)1 −m 

(6b) 

[13] . In Eqs. (6) , m [ −] and P 0 [ Pa ] are the fitting parameters and 

S e [ −] denotes the effective wetting phase saturation defined by 

S e = 

S w 

− S w,r 

1 − S w,r − S n,r 
, (7) 

where S α,r [ −] denotes the residual saturation of the phase α. 

Further, the continuity Eq. (1) for both phases can be trans- 

formed into 

∇ · � v T = 0 , (8a) 

φ
∂S w 

∂t 
+ ∇ · ( f (S w 

) � v T − D (S w 

) ∇S w 

) = 0 , (8b) 

where the unknown functions are the wetting phase saturation 

S w 

= S w 

(t, � x ) and the total velocity � v T = 

�
 v T (t, � x ) for all t > 0 and 

�
 x ∈ R 

d . The boundary and initial conditions will be discussed in 

Section 2.3 . 

2.2. Multidimensional spherical transform 

A general multidimensional self-similar solution of the govern- 

ing Eq. (8) can be obtained in the radial phase displacement flow 

where the wetting phase is injected through a point source placed 

at the origin of coordinates. Note that the complementary problem 

where the non-wetting phase is injected and displaces the wetting 

phase is described by an equation similar to Eq. (8) but with differ- 

ent coefficients as shown by McWhorter and Sunada [15] or Fu ̌cík 

et al. [11] . The derivation of the corresponding self-similar solution 

is analogous to the one given here. 

Assuming � v T = 

�
 v T (t, r) and S w 

= S w 

(t, r) exhibit spherical sym- 

metry in R 

d , where r [ L ] denotes the non-negative radial coordi- 

nate, Eq. (8a) is resolved by 

�
 v T (t, r) = 

Q 0 (t) 

γd r 
d−1 

�
 ι, (9) 

where Q 0 [ L 
d T −1 ] denotes the time-dependent volumetric injection 

rate, � ι is the unit vector in the spherical coordinates pointing in the 

positive radial direction, and 

γd = 

dπ
d 
2 

�
(

d 
2 

+ 1 

) , (10) 

where � is the �-function, denotes the surface area of the d - 

dimensional unit sphere. 

As in [15] , Eq. (8b) is then transformed into 

γd r 
d−1 φ

∂S w 

∂t 
+ (1 − f (S i )) Q 0 

∂F 

∂r 
= 0 , (11) 

where S i [ −] denotes the initial saturation. The function F = 

F (t, r) [ −] is expressed as 

F = 

Q w 
Q 0 

− f (S i ) 

1 − f (S i ) 
, (12) 
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