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a b s t r a c t 

We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully pen- 

etrating directional wellbore (vertical, horizontal, or slant) via Green’s function method. The mathemat- 

ical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the 

box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux – one 

side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free 

boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, 

derivation of convergence rates, and numerical optimization of integration techniques. Upon application 

of the Poisson Resummation method, we were able to derive two sets of solutions with inverse con- 

vergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly con- 

vergent series (solution-B). From this work we were able to link Green’s function method (solution-B) 

back to image well theory (solution-A). We then derived an equation defining when the convergence rate 

between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more 

rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have 

also shown that one may simplify each of the three infinite series for the three-dimensional solution to 

11 terms and still maintain a maximum relative error of less than 10 −14 . 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The analytical solution for drawdown caused by unsteady flow 

to a well can be derived using point sources and Green’s func- 

tions ( Hantush and Jacob, 1955; Gringarten and Ramey, 1973 ). This 

methodology optimized for rapid convergence at both early and 

late times was used to solve for heat flow by Lord Kelvin over 

100 years ago ( Thomson, 1884 ). Since then, these solutions have 

been continuously reorganized and republished in the heat flow 

literature ( Carslaw and Jaeger, 1959 ). Although the Green’s func- 

tion methodology has been used in heat flow literature for quite 

some time, it was not until much later that it was used in well 

hydraulics to obtain drawdown near a pumping well ( Hantush and 

Jacob, 1955; Gringarten and Ramey, 1973 ). 

Early petroleum publications did not use the early-time and 

late-time rapidly convergent series as presented in the heat flow 

literature ( Thomson, 1884; Carslaw and Jaeger, 1959 ). Many of 

the early solutions used in petroleum engineering employed the 

late-time rapidly convergent series and then attempted to find 

∗ Corresponding author. Fax: + 19798456162. 

E-mail addresses: bnblumenthal@hotmail.com (B.J. Blumenthal), 

zhan@geos.tamu.edu (H. Zhan). 

early-time approximations ( Gringarten and Ramey, 1973; Clonts 

and Ramey, 1986; Goode and Thambynayagam, 1987; Daviau et al., 

1988; Babu and Odeh, 1988; Babu and Odeh, 1989 ). In an effort 

to avoid slowly convergent series, some of these solutions restrict 

wellbore location. For example, Appendix A of Babu and Odeh 

(1988 ) gave drawdown approximations noting that they were only 

valid “for wells not too close to the boundaries”; more specifically 

not within 25% of the reservoir boundaries. In an effort to avoid 

slowly convergent series, other solutions relied on flow period ap- 

proximations. For example, Goode and Thambynayagam (1987 ) re- 

lied on the use of four different approximations for drawdown de- 

fined by four flow periods which were “developed empirically”. 

Given the conditions imposed and accuracies desired by these 

works, utilizing both early-time and late-time rapidly convergent 

solutions may have only required a few iterations and thus simpli- 

fied their solutions ( Thomson, 1884 ). 

More recently, petroleum engineering solutions have employed 

both early-time and late-time rapidly convergent series, thus min- 

imizing convergence issues ( Odeh and Babu, 1990 ). Despite this 

realization in the petroleum literature, recent groundwater publi- 

cations have not taken advantage of this work and are thus left 

with slowly convergent series at early-time ( Zhan et al., 2001; Park 

and Zhan, 2002; Batu, 2012, 2014, 2015 ). Groundwater publications 
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Nomenclature 

a, b, c thickness of the box shaped aquifer in 

the x, y , and z dimensions respectively [L] 

x 0 , y 0 , z 0 location of the point-sink inside a box 

shaped aquifer [L] 

x, y, z location of the point experiencing draw- 

down inside a box shaped aquifer [L] 

K x , K y , K z principal hydraulic conductivity in the x, 

y , and z dimensions respectively [LT −1 ] 

S s specific storage [L −1 ] 

d drawdown [L] 

Q [ t ] well discharge (positive value) or injec- 

tion (negative value) rate as a function of 

time [L 3 T −1 ] 

t time since well discharge or injection be- 

gan [T] 

τ a dummy variable representing time in 

an integration [T] 

δ[] Dirac delta function [function] 

F x , F y , F z one-dimensional boundary value solu- 

tions for the x, y , and z dimensions re- 

spectively [function] 

x 1 , y 1 , z 1 directional wellbore starting location [L] 

x 2 , y 2 , z 2 directional wellbore ending location [L] 

x’, y’, z’ center point of the directional wellbore 

[L] 

R 1 , R 2 , R 3 unit vector from the start to the end of 

a directional wellbore for the x, y , and z 

dimensions respectively [dimensionless] 

U 1 , U 2 , U 3 unit vector perpendicular to both R 1 , R 2 , 

R 3 and V 1 , V 2 , V 3 [dimensionless] 

V 1 , V 2 , V 3 unit vector perpendicular to both R 1 , R 2 , 

R 3 and U 1 , U 2 , U 3 [dimensionless] 

r w 

radius of the wellbore [L] 

L length of the wellbore [L] 

x 0 [ θ ], y 0 [ θ ], z 0 [ θ ] parameterization of the point-sink along 

the centerline of a directional wellbore 

[function, L] 

x 0 [ w ], y 0 [ w ], z 0 [ w ] parameterization of the point experienc- 

ing drawdown along the circumference of 

a directional wellbore at its center loca- 

tion [function, L] 

have either approximated early-time similar to the petroleum lit- 

erature of the late 1980’s ( Zhan et al., 2001; Park and Zhan, 2002 ) 

or have ignored the problem all together ( Batu, 2012, 2014, 2015 ). 

2. Analytical solution for drawdown caused by a directional 

wellbore 

To address needs found in the literature review, we present 

drawdown solutions derived using a Green’s function methodol- 

ogy optimized for rapid convergence at early and late times. The 

aquifer is assumed to be confined, homogeneous, and anisotropic. 

Our solutions are derived for a partially or fully penetrating, uni- 

form flux, directional wellbore (vertical, horizontal, or slant) in a 

three-dimensional box shaped aquifer. Any dimension of the box- 

shaped aquifer can have one of six possible boundary conditions: 

1) both sides no-flux; 2) one side no-flux – one side constant- 

head; 3) both sides constant-head; 4) one side no-flux; 5) one side 

constant-head; 6) free boundary conditions. The solution has been 

derived for calculation of drawdown within the producing well- 

Fig. 1. Box shaped aquifer conceptual model with a point-sink ( x 0 , y 0 , z 0 ) and a 

point experiencing drawdown ( x, y, z ). 

bore, although the methodology could easily be applied to obser- 

vation wells. 

Our solution addresses several key findings from the literature 

review. Firstly, recent groundwater solutions ( Zhan et al., 2001; 

Park and Zhan, 2002; Batu, 2012, 2014, 2015 ) have not taken ad- 

vantage of both the early-time and late-time rapidly convergent 

solutions ( Thomson, 1884; Carslaw and Jaeger, 1959; Odeh and 

Babu, 1990 ). Secondly, although the work of Hantush and Jacob 

(1955 ) used source and Green’s functions, their work was difficult 

to follow and apply, therefore an alternative approach and solution 

is worthwhile. Thirdly, while somewhat similar solutions to ours 

have been developed ( Hantush and Jacob, 1955; Odeh and Babu, 

1990 ), those solutions were constructed for the purpose of hand 

calculation with a much lower degree of accuracy, and have not 

been optimized for the speed and flexibility of numerical integra- 

tion as is being considered here. Fourthly, there have been only 

qualitative statements made on convergence rates and the itera- 

tions required for convergence without a rigorous quantitative as- 

sessment ( Thomson, 1884 ). 

2.1. Drawdown-discharge solution for a point-sink 

The mathematical relationship between a well’s discharge rate 

and drawdown begins with the derivation of drawdown for a 

point-sink/source. This point-sink has a discharge rate Q [ t ] [L 3 T −1 ] 

as a function of time that is positive for extraction (sink) and neg- 

ative for injection (source). The origin of the Cartesian coordinate 

system is at left-bottom-front corner. The x and y axes are along 

the horizontal directions with the positive x axis pointing to the 

right and the positive y axis pointing to the back. The z axis is 

upward vertical. The point-sink may be located anywhere inside 

a box ( Fig. 1 ). The dimensions [L] of the box are a, b, c for the 

x, y and z axes respectively. The point-sink is located at x 0 , y 0 , z 0 
[L]. The point-sink creates aquifer drawdown at some point x, y, 

z [L]. The aquifer is assumed to have a uniform hydraulic head or 

zero drawdown everywhere before the initiation of pumping. The 

boundary condition is one of the six possible choices outlined pre- 

viously for each of the three dimensions. The aquifer is assumed to 

be homogeneous but can be isotropic or anisotropic. The principal 

directions of the hydraulic conductivity tensor are along the x, y , 

and z axes respectively. 

Derivation of our model begins with the partial differential 

equation governing confined groundwater flow with a point-sink 

represented by Dirac delta functions as follows 

S s 
∂d 

∂t 
= K x 

∂ 2 d 

∂ x 2 
+ K y 

∂ 2 d 

∂ y 2 
+ K z 

∂ 2 d 

∂ z 2 

+ Q [ t ] δ[ x − x 0 ] δ[ y − y 0 ] δ[ z − z 0 ] , (1) 
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