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a b s t r a c t 

Hillslope scale runoff is generated as a result of interacting factors that include water influx rate, sur- 

face and subsurface properties, and antecedent saturation. Heterogeneity of these factors affects the ex- 

istence and characteristics of runoff. This heterogeneity becomes an increasingly relevant consideration 

as hydrologic models are extended and employed to capture greater detail in runoff generating pro- 

cesses. We investigate the impact of one type of heterogeneity – subsurface permeability – on runoff

using the integrated hydrologic model ParFlow. Specifically, we examine the sensitivity of runoff to vari- 

ation in three-dimensional subsurface permeability fields for scenarios dominated by either Hortonian 

or Dunnian runoff mechanisms. Ten thousand statistically consistent subsurface permeability fields are 

parameterized using a truncated Karhunen–Loéve (KL) series and used as inputs to 48-h simulations of 

integrated surface-subsurface flow in an idealized ‘tilted-v’ domain. Coefficients of the spatial modes of 

the KL permeability fields provide the parameter space for analysis using the active subspace method. 

The analysis shows that for Dunnian-dominated runoff conditions the cumulative runoff volume is sensi- 

tive primarily to the first spatial mode, corresponding to permeability values in the center of the three- 

dimensional model domain. In the Hortonian case, runoff volume is sensitive to multiple smaller-scale 

spatial modes and the locus of that sensitivity is in the near-surface zone upslope from the domain out- 

let. Variation in runoff volume resulting from random heterogeneity configurations can be expressed as 

an approximately univariate function of the active variable, a weighted combination of spatial parameter- 

ization coefficients computed through the active subspace method. However, this relationship between 

the active variable and runoff volume is more well-defined for Dunnian runoff than for the Hortonian 

scenario. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The generation and movement of overland flow (or runoff) is 

a key hydrologic process that drives associated phenomena like 

streamflow, erosion, and contaminant transport. Local-scale mech- 

anistic explanations for runoff generation have been examined 

widely in the literature, with the works of Horton (1933) and 

Dunne and Black (1970) defining the framework common to many 

modern runoff studies. Saturation excess overland flow ( Dunne and 

Black, 1970 ) occurs when pore space within the soil column is 

filled with water (saturated) such that addition of water, com- 
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monly as lateral subsurface flux, forces water to exfiltrate at the 

land surface. In contrast, infiltration excess overland flow ( Horton, 

1933 ) occurs when the precipitation rate exceeds the ability of the 

soil surface to absorb and transmit the incoming water. Both pro- 

cesses can lead to local runoff generation at different times or lo- 

cations in a watershed. Whether runoff generated in one location 

translates to runoff in a downslope location depends on the state 

of the soil surface in the intervening flow path. For example, if the 

flow path is dominated by saturated soils or has very low infiltra- 

tion capacity, the upslope runoff is more likely to propagate down- 

hill. The realization of runoff at a downslope point on a hillslope 

or in a watershed is the result of the integrated effects of moisture 

and hydraulic properties along each surface flow path. This, then, 

implies that the runoff response may contain some information on 

the heterogeneity of such properties. 

The impacts of land surface property heterogeneity on runoff

have been studied extensively – a host of field and simulation 
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studies have helped establish links between near-surface hydraulic 

conductivity heterogeneity and spatial, temporal, and statistical 

properties of runoff (e.g. Freeze, 1980; Loague, 1988; Singh, 1997 ). 

The sensitivity of runoff to this heterogeneity, however, depends 

on other, often transitory, factors like prevailing runoff mecha- 

nisms or the nature of a precipitation event. Results from Loague 

(1988) suggest that the degree and resolution of heterogeneity may 

matter more for some aspects of runoff than others and that Dun- 

nian mechanisms may be less sensitive to hydraulic conductivity 

variability than runoff arising from Hortonian conditions. Similarly, 

the results of Smith and Hebbert (1979) , Séguis et al. (2002) , and 

Maxwell and Kollet (2008) support the idea that runoff sensitiv- 

ity to soil property heterogeneity is inversely proportional to rain- 

fall rate for Hortonian conditions—that is, characteristics of runoff

depend increasingly on the degree of permeability heterogeneity 

as rainfall intensity decreases. Work by Woolhiser et al. (1996) , 

Michaelides and Wilson (2007) , Maxwell and Kollet (2008) , and 

Meyerhoff et al. (2014) suggests that the spatial arrangement or 

trend in heterogeneous properties is an important component of 

the overall effect of heterogeneity. For example, a stochastically 

generated permeability field with connected regions of low perme- 

ability would yield higher runoff than statistically equivalent real- 

izations lacking such random spatial coherence. Maxwell and Kol- 

let (2008) point out, however, that a simple counting of connected 

low permeability zones alone cannot be used to fully predict the 

resulting runoff. 

While much of the existing literature focuses on runoff simu- 

lated assuming a one or two-dimensional representation of sub- 

surface flow, recent studies have begun to examine complex- 

ities of runoff response in simulations that incorporate three- 

dimensional variably saturated subsurface flow. Maxwell and Kol- 

let (2008) demonstrated the complicated interplay among spa- 

tial variance in hydraulic conductivity, rainfall rates, and ergod- 

icity for Hortonian overland flow on a hillslope using the inte- 

grated hydrologic code ParFlow. Building on previous studies indi- 

cating that runoff sensitivity to hydraulic conductivity heterogene- 

ity depends on precipitation rate, Smith and Hebbert (1979) , Séguis 

et al. (2002) , and Maxwell and Kollet (2008) found that effective 

runoff behavior may only be possible under limited high rainfall, 

low variance conditions. Subsequent studies using ParFlow suggest 

that, while heterogeneity becomes less important for controlling 

runoff under high water table conditions (i.e. hillslope runoff be- 

comes a function of mean permeability alone), variance in the sat- 

urated hydraulic conductivity field controls the partitioning of to- 

tal runoff outflow between overland flow and base flow ( Meyerhoff

and Maxwell, 2011 ). 

2. Methods 

In this study we investigate the sensitivity of accumulated 

runoff volume, our scalar output of interest, to changes in the spa- 

tially varying subsurface permeability field using active subspaces 

and an integrated hydrologic model, ParFlow. The methods used 

for this work are described here in six parts: (1) the active sub- 

space method, (2) configuration of the ParFlow hydrologic model, 

(3) parameterization of the subsurface permeability field, (4) com- 

putation of spatial basis functions, (5) development of a global spa- 

tial sensitivity metric, and (6) setup of hydrologic scenarios. 

2.1. Active subspaces 

We describe active subspaces for a generic scalar-valued func- 

tion of several variables, which we denote f ( � x ) . In this particular 

application, f represents the total cumulative runoff volume, and 

�
 x ∈ R 

m represents the m parameters of the permeability field; we 

discuss the permeability parameterization in Sections 2.3 and 2.4 . 

We assume f ( � x ) is differentiable, and we denote the gradient—

oriented as a column m -vector—by ∇ f ( � x ) . 

The active subspace from Constantine (2015) is defined by the 

first few eigenvectors of the following symmetric, positive semidef- 

inite matrix, 

C = 

∫ 
∇ f ∇ f T ρ d � x = W �W 

T (1) 

where ρ = ρ( � x ) is a non-negative weight function on the space 

of parameters normalized so that 
∫ 

ρ d � x = 1 . The weight func- 

tion is given by the model; it is not a parameter of the method. 

Loosely speaking, ρ quantifies the probability of sets of permeabil- 

ity parameters. The eigenvectors of C depend on ρ . If the modeller 

changes ρ , then the analysis must be repeated. 

The W in (1) is the m × m orthogonal matrix of eigenvectors; 

� is the diagonal matrix of non-negative eigenvalues in decreasing 

order. These satisfy the following relationship with f : 

λi = 

∫ (∇ f T � w i 

)2 
ρ d � x , i = 1 , . . . , m. (2) 

In words, the eigenvalue measures the mean-squared directional 

derivative of f along the corresponding eigenvector. If the first n < 

m eigenvalues are much larger than the rest, then the correspond- 

ing eigenvectors identify a set of important directions in the space 

of inputs; perturbing the inputs � x along these important directions 

changes f more, on average, than perturbations orthogonal to the 

important directions. We exploit this relationship to study the sen- 

sitivity of runoff to a properly parameterized permeability field. 

One way to estimate the eigenpairs in (1) is with Monte Carlo 

as in Constantine and Gleich (2015) . But such an approach re- 

quires access to the gradient ∇ f ( � x ) as a subroutine. In many 

applications—including ours—such a subroutine is not available, so 

the gradient must be approximated. Finite difference approxima- 

tions are infeasible due to the cost of evaluating f ( � x ) . Approximat- 

ing a gradient vector takes m + 1 evaluations of f —one for each 

perturbation of the inputs. And estimating C with Monte Carlo 

would require several such gradient approximations. To circumvent 

this difficulty, we employ a method based on the following obser- 

vation. Assume that f is well-approximated by a linear function of 

�
 x 1 , 

f ( � x ) ≈ a 0 + 

�
 a T � x , ∇ f ( � x ) ≈ �

 a . (3) 

In this case, C becomes 

C ≈
∫ 

�
 a � a T ρ d � x = 

�
 a � a T = 

�
 w λ �

 w 

T , (4) 

where λ = ‖ � a ‖ 2 and 

�
 w = 

�
 a / ‖ � a ‖ . This observation yields the follow- 

ing heuristic method Constantine (2015 , Algorithm 1.3). 

1. Choose N = O(m ) —e.g., 2-to-10 times the number of compo- 

nents in 

�
 x . 

2. For i = 1 , . . . , N, draw 

�
 x i at random according to the density 

ρ( � x ) . 

3. Compute f i = f ( � x i ) —i.e., run the simulation for each set of 

inputs � x i . 

4. Use least-squares to compute the coefficients of a linear ap- 

proximation of f ( � x ) from a set of pairs { � x i , f i } . Call these co- 

efficients ˆ �
 a . 

5. Let 

ˆ �
 w = 

ˆ �
 a / ‖ ̂

 �
 a ‖ (5) 

be the vector that defines the one-dimensional active sub- 

space. 

1 Runoff is not a linear function of permeability parameters. The linear assump- 

tion is used only to develop the heuristic for estimating a one-dimensional active 

subspace. 
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