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a b s t r a c t 

Globally, the pressures of expanding populations, climate change, and increased energy demands are mo- 

tivating significant investments in re-operationalizing existing reservoirs or designing operating policies 

for new ones. These challenges require an understanding of the tradeoffs that emerge across the complex 

suite of multi-sector demands in river basin systems. This study benchmarks our current capabilities to 

use Evolutionary Multi-Objective Direct Policy Search (EMODPS), a decision analytic framework in which 

reservoirs’ candidate operating policies are represented using parameterized global approximators (e.g., 

radial basis functions) then those parameterized functions are optimized using multi-objective evolution- 

ary algorithms to discover the Pareto approximate operating policies. We contribute a comprehensive 

diagnostic assessment of modern MOEAs’ abilities to support EMODPS using the Conowingo reservoir 

in the Lower Susquehanna River Basin, Pennsylvania, USA. Our diagnostic results highlight that EMODPS 

can be very challenging for some modern MOEAs and that epsilon dominance, time-continuation, and 

auto-adaptive search are helpful for attaining high levels of performance. The ε-MOEA, the auto-adaptive 

Borg MOEA, and ε-NSGAII all yielded superior results for the six-objective Lower Susquehanna bench- 

marking test case. The top algorithms show low sensitivity to different MOEA parameterization choices 

and high algorithmic reliability in attaining consistent results for different random MOEA trials. Overall, 

EMODPS poses a promising method for discovering key reservoir management tradeoffs; howe ver algo- 

rithmic choice remains a key concern for problems of increasing complexity. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Operational water management within river basins world- 

wide is confronting a challenging combination of growing pop- 

ulation pressures, evolving multi-sector demands, and climate 

change ( Edenhofer et al., 2014 ). These challenges are pressing ex- 

isting and planned hydropower operations to adopt integrated 

water resources management that takes into account a broad 

range of social, economic, and environmental issues ( World Bank, 

2009 ). Efficient multi-purpose reservoir management strategies are 

critical given the growing risks for flood and drought shocks 

as well as the need to meet evolving water allocation de- 

mands across a complex set of users (e.g., balancing the vari- 
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ability of renewables or flow maintenance for ecosystem services 

( Castelletti et al., 2011, 2014; Kern et al., 2015 )). However; identi- 

fying efficient and balanced reservoir management strategies that 

meet energy needs while maintaining other key river basin ser- 

vices remains a severe challenge for actual operations. 

Reservoir policies need to realistically consider the com- 

plex dynamics that typify river basin systems. Consequently, 

the optimization techniques used in their design need to avoid 

simplifications that widely discourage their application in real 

reservoir contexts Labadie (2004) . Popular operational water 

management frameworks ranging from classical tools (e.g., dy- 

namic programming (DP) or linear programming(LP) family of 

methods) to single-objective heuristics are limited in the breadth 

of multi-objective formulations that they can resolve ( Castelletti 

et al., 2010, 2008; Giuliani et al., 2015a ). Traditionally, these 

approaches were developed for single objective formulations and 

only recently have they extended to multi-objective formulations. 

Yet, they are still limited in their scalability and are not applied 
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to many-objective formulations (with more than four objectives) 

( Fleming et al., 2005 ). The weighting schemes used in traditional 

multi-criterion implementations of single-objective methods are 

strongly sensitive to the convexity as well as the separability of 

the resulting aggregate management objectives ( Castelletti et al., 

2008, 2012 ). These issues pose important limits for formulations 

with heterogeneous objective functions. For instance, a minimax 

reliability objective and an expected cost objective may encounter 

difficulties when integrated into a single weighted function when 

using a DP framework. The classical approach for appropriately ag- 

gregating conflicting objectives requires an a-priori , well-specified 

set of weights ( Efstratiadis et al., 2004 ). Using the terminology of 

Cohon and Marks (1975) , DP-based solution strategies can also be 

used as generating methods, where a suite of optimization runs are 

executed as the weights for different objectives are varied to attain 

Pareto optimal solutions ( Soncini-Sessa et al., 2007 ). The Pareto 

optimal set represents the suite of solutions whose performance 

in a single objective cannot be improved without degrading their 

performance in one or more other objectives. Plotting this Pareto 

optimal set of solutions in a problem’s objective space yields the 

Pareto front, or the geometric representation of the optimal trade- 

offs. This scalarization process requires one optimization run for 

each point that defines a trade-off curve, which is computationally 

very demanding and often results in poor representations of the 

Pareto frontier ( Castelletti et al., 2013 ). These limitations make 

it important to understand the value of algorithms capable of 

approximating the Pareto front in a single run (e.g., ( Castelletti 

et al., 2013; Reed et al., 2013; Vamplew et al., 2011 )). Among 

these methods, Multi-objective Evolutionary Algorithms (MOEAs) 

have been demonstrated to be capable of discovering high quality 

representations of complex tradeoffs ( Giuliani et al., 2014; Maier 

et al., 2014; Nicklow et al., 2010; Reed et al., 2013 ). 

Evolutionary Multiobjective Direct Policy Search (EMODPS) 

provides a flexible framework for employing MOEAs in complex 

multi-purpose reservoir systems. Giuliani et al. (2015a) formal- 

ized this approach, which features reservoir policy identification, 

multi-objective evolutionary optimization and visual analytics 

to characterize the baseline operations and discover the key 

operational tradeoffs to provide operators with guidance on 

balancing a reservoir system’s competing demands. Rosenstein 

and Barto (2001) first introduced direct policy search (DPS) 

in the general control theory literature. DPS is also known as 

parameterization-simulation-optimization in the water resources 

literature ( Koutsoyiannis and Economou, 2003 ) with earlier water 

resources applications found in Guariso et al. (1986) and Oliveira 

and Loucks (1997) . EMODPS provides users with flexibility in how 

to formulate and solve multi-objective reservoir control problems. 

EMODPS benefits from (1) the simultaneous consideration of 

heterogeneous forms of objective functions (e.g., minimax and ex- 

pected value) ( Giuliani and Castelletti, 2016 ), (2) the potential use 

of exogenous information to condition control decisions, ( Giuliani 

et al., 2015b ) and (3) simulation-based treatment of uncertainties 

in system dynamics or performance ( Giuliani et al., 2014 ). EMODPS 

copes with high dimensionality reservoir’s operational decisions 

by instead optimizing the parameters of a control policy. This 

is a parsimonious approach that broadens analysis of complex 

reservoir systems; the systems do not need to be simplified as the 

methodology can accommodate more objectives and uncertainties 

without increasing substantially a problem’s difficulty. 

Despite these practical advantages, the success of EMODPS is 

highly dependent on appropriately representing the space of pos- 

sible operating policies as well as the MOEA’s capability to opti- 

mize them. The flexibility and accuracy of global approximators 

to represent alternative operating policies has been assessed in 

Giuliani et al. (2015a ). Although there are a growing number of 

studies exploring the EMODPS framework, at present no rigorous 

algorithmic assessments have been completed. The key contribu- 

tion and focus of this study is to diagnose the difficulty of using 

MOEAs to support the EMODPS framework using the six-objective 

Lower Susquehanna test case, and analyze which MOEAs are more 

suitable for finding the best Pareto approximate set. The Lower 

Susquehanna test case is challenging due to its large number of 

conflicting multi-sector demands and the time resolution of the 

analysis, which is linked to the rapidly changing energy prices. Key 

system demands include hydropower production, urban water sup- 

ply, recreation and environmental requirements. 

2. Lower Susquehanna River Basin benchmark 

The Susquehanna River is the largest river in the eastern United 

States, contributing 50% of the inflows to the Chesapeake Bay. The 

basin drains over a 71,0 0 0 km 

2 watershed and provides public wa- 

ter supply for a population of 4.1 million people. In the Lower 

Susquehanna River Basin, the Conowingo dam plays a key role 

in balancing the multi-sector water demands within the region, 

representing one of the largest non-federal hydroelectric dams in 

the U.S. (see Fig. 1 ). The Conowingo Dam embodies a complex 

multi-objective system due to the competing demands between 

hydropower production, environmental flow requirements, cool- 

ing water for Peach Bottom Nuclear Power Plant, recreational use 

and water supply for Baltimore, MD and Chester, PA. (illustrated 

in Fig. 2 ). To address these issues, the Susquehanna River Basin 

Commission has historically led computer-aided adaptive manage- 

ment ( Sheer and Dehoff, 2009 ) to mediate compromises across 

the system’s multi-sector demands. More recently, Giuliani et al. 

(2014) have contributed a more explicit analysis of the tradeoffs 

confronting the Lower Susquehanna, highlighting important poten- 

tial conflicts between hydropower revenue, nuclear power cooling 

water, and environmental flow requirements. The Lower Susque- 

hanna test case is representative of the management challenges 

faced in reservoir systems worldwide. A key question explored in 

this study is how capable of MOEAs are at capturing their trade- 

offs. Building off of the initial contributions of Giuliani et al. (2014) , 

the Lower Susquehanna provides an excellent benchmarking test 

case to evaluate this question. 

2.1. Susquehanna River Basin model 

The Lower Susquehanna simulation model used in this study 

is based on the historical formulation in Giuliani et al. (2014) , 

where a dynamic mass balance over a historical time series of in- 

flows and evaporation rates as well as the Conowingo and Muddy 

Run Reservoirs’ releases. Muddy Run Reservoir is a pumped hy- 

dropower operation which takes advantage of intra-daily cycles in 

energy prices. During off-peak hours, water is pumped uphill from 

Conowingo Reservoir into Muddy Run Reservoir; this water is re- 

leased during peak hours to maximize hydropower profit for the 

combined system. 

The power house, located in Conowingo, MD, exploits the re- 

duced pricing associated with excess grid capacity during off peak 

hours to pump water from the Conowingo Reservoir uphill into 

Muddy Run, the water then relies on gravity-based return flows 

to Conowingo to take advantage of peak power demand periods. 

Direct rainfall over the reservoir surface can be negligible in 

relation to flow contributions from upstream contributing areas. 

Evaporation, in the other hand, is considered since this test case 

focuses on prolonged summer droughts were the losses are not 

negligible. These relationships are described in Eq. (1) : 
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