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a b s t r a c t 

Remote sensing information has been extensively developed over the past few years including spatially 

distributed data for hydrological applications at high resolution. The implementation of these products 

in operational flow forecasting systems is still an active field of research, wherein data assimilation plays 

a vital role on the improvement of initial conditions of streamflow forecasts. We present a novel im- 

plementation of a variational method based on Moving Horizon Estimation (MHE), in application to the 

conceptual rainfall-runoff model HBV, to simultaneously assimilate remotely sensed snow covered area 

(SCA), snow water equivalent (SWE), soil moisture (SM) and in situ measurements of streamflow data 

using large assimilation windows of up to one year. This innovative application of the MHE approach al- 

lows to simultaneously update precipitation, temperature, soil moisture as well as upper and lower zones 

water storages of the conceptual model, within the assimilation window, without an explicit formulation 

of error covariance matrixes and it enables a highly flexible formulation of distance metrics for the agree- 

ment of simulated and observed variables. 

The framework is tested in two data-dense sites in Germany and one data-sparse environment in 

Turkey. Results show a potential improvement of the lead time performance of streamflow forecasts by 

using perfect time series of state variables generated by the simulation of the conceptual rainfall-runoff

model itself. The framework is also tested using new operational data products from the Satellite Appli- 

cation Facility on Support to Operational Hydrology and Water Management (H-SAF) of EUMETSAT. This 

study is the first application of H-SAF products to hydrological forecasting systems and it verifies their 

added value. Results from assimilating H-SAF observations lead to a slight reduction of the streamflow 

forecast skill in all three cases compared to the assimilation of streamflow data only. On the other hand, 

the forecast skill of soil moisture shows a significant improvement. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

An increasing number of satellite missions with dedicated re- 

mote sensing instruments for hydrological purposes have recently 

become available. Among this, the European Organization for the 

Exploitation of Meteorological Satellites (EUMETSAT) established 

the Satellite Application Facility on Support to Operational Hy- 
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drology and Water Management (H-SAF) in 2005. HSAF provides 

new satellite-derived products to satisfy the needs of operational 

hydrology and performs independent validation of the usefulness 

of these products. The currently operational H-SAF data include, 

among others, products for snow covered area (SCA), snow water 

equivalent (SWE), and soil moisture (SM). SCA, released as prod- 

uct H10 within H-SAF data, is generated from visible light and in- 

frared images taken from low-earth and geostationary orbit ( H-SAF, 

2011 ). SWE product H13 is derived from microwave measurements 

( H-SAF, 2012a ), whereas SM product H14 contains the profile index 

of the root-zone soil moisture generated by assimilating MetOp 

scatterometer observations in the European Centre for Medium- 

Range Weather Forecasts (ECMWF) Land Data Assimilation System 

( H-SAF, 2012b ). 
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The growing availability of remote sensing data has enabled 

the corresponding assimilation of this data in flow forecasting sys- 

tems. Examples of these include the assimilation of snow products 

derived from the MODerate resolution Imaging Spectroradiometer 

(MODIS) ( Andreadis and Lettenmaier, 2006; Nagler et al., 2008 ), 

SWE from the Advanced Microwave Scanning Radiometer (AMSR- 

E) ( Andreadis and Lettenmaier, 2006 ), radar images of Envisat 

ASAR ( Nagler et al., 2008 ), microwave radiance data from AMSR- 

E ( Dechant and Moradkhani, 2011 ), SM from AMSR-E ( Sahoo et al., 

2013; Wanders et al., 2014 ), SM from Advanced Scatterometer (AS- 

CAT) ( Lu et al., 2015 ) as well as from the Soil Moisture and Ocean 

Salinity (SMOS) mission ( Wanders et al., 2014 ), and snow depths 

from the Cold and Arid Regions Science Data Center (CARD) ( Lu et 

al., 2015 ). 

The main purpose of data assimilation is to provide updated 

model states at forecast time, based on recent observations. These 

updated states are used as a better estimate of initial conditions 

for the subsequent forecast, therefore improving the lead time ac- 

curacy of the forecast. In data assimilation, observations and model 

simulations are combined in an optimization problem that im- 

proves both observed and simulated data ( Reichle, 2008 ). A more 

comprehensive definition is given by Liu and Gupta (2007) , which 

consists of the merging of models with data, not only limited to 

the problem of state estimation but also to identify an appropriate 

model structure and parameter estimation. 

Most data assimilation techniques applied in hydrology can be 

categorized as either sequential assimilation or variational assim- 

ilation. The former is commonly based on variants of Kalman Fil- 

ters for which analytical solutions can be computed. Kalman filters 

estimate the best fit comprised by a true state and the model es- 

timate, and between the true state and the observation ( Reichle, 

2008 ). This best state, or optimum value, is explicitly determined 

by the description of the model and the observation uncertainties, 

solved through the linear Kalman gain matrix. The dynamics of 

the system are partly captured by propagating the error from one 

time step to another. The Extended Kalman Filter (EKF) broadens 

the application to non-linear systems while the Ensemble Kalman 

Filter (EnKF) considers an ensemble of model states to determine 

the model uncertainties by perturbing the forcing variables using a 

Monte-Carlo approach ( Reichle et al., 2002 a, b ). Alternatively, vari- 

ational approaches depend on numerical approximations and opti- 

mization algorithms which iterate to find near-optimum solutions 

of a pre-defined objective function. Variational methods depend on 

adjoint models which compute the sensitivity of the model output 

to each of the inputs and states of the model ( Seo et al., 2003 ). 

This is usually seen as their main drawback. 

Sequential data assimilation has been used extensively in recent 

years partly because of its easy integration with existing models 

( Liu et al., 2012 ). While several authors have described the imple- 

mentation of this approach to independently assimilate: i) SM (e.g. 

Chen et al., 2011; Han et al., 2012; Kumar et al., 2008; Sahoo et al., 

2013 ); ii) snow (e.g. Andreadis and Lettenmaier, 2006; Clark et al., 

20 06; Kumar et al., 20 08; Liu et al., 2015 ); and iii) streamflow (e.g. 

Clark et al., 2008; McMillan et al., 2013 ), few have attempted to 

simultaneously assimilate more than one observation variable type 

at a time ( Trudel et al., 2014 ). Among these, Aubert et al., (2003) 

as well as Samuel et al., (2014) , assimilated both, in situ SM and 

streamflow data, into conceptual models using EKF and EnKF re- 

spectively and showed that the simultaneous assimilation of both 

observations gives more robust results than assimilating each ob- 

servation individually. Other relevant studies, such as Mazzoleni et 

al., (2015) , presented the assimilation of dynamic and intermittent 

observations using the EnKF and improved model performance for 

several flood events by using additional uncertain observations as- 

sociated to potential citizen measurements. 

The assimilation of additional observations into the hydrolog- 

ical models seems a reasonable step towards the improvement 

of the forecast performance. Rakovec et al., (2012) assimilated 

streamflow observations from various sets of spatially distributed 

gauges using EnKF and obtained better performance when using 

an augmented observation vector. Together with Clark et al., (2008) 

, they recognized that hydrological forecasts could be improved 

by adding several previous time steps before the forecast time to 

the analysis, as opposed to using the instantaneous covariance be- 

tween states and discharge. Rakovec et al (2015) then used the 

Asynchronous Ensemble Kalman Filter (AEnKF) approach to assim- 

ilate multiple streamflow observations from an assimilation win- 

dow of approximately the same duration as the concentration time 

of the tested basin. Their results showed the benefits of adding 

these observations into the assimilation procedure. 

On the other hand, variational methods, or the representer- 

based approach, use numerical approximations to minimize an ob- 

jective function, also referred to as cost function, penalty func- 

tion or misfit ( Seo et al., 2003 ). The objective function uses dis- 

tance metrics to penalize the introduction of noise into the model 

as well as the agreement between simulated and observed vari- 

ables. Unlike sequential assimilation, variational methods do not 

rely on propagating the covariance matrix from one time step to 

the next but it is rather implicitly considered by simultaneously 

updating forcing and model states and propagating the effects in 

the model within the assimilation window. This makes it a very 

flexible method for the formulation of the objective function ( Seo 

et al., 2003 ), which provides a simple approach to assimilate sev- 

eral types of data and deal with large assimilation windows. As 

mentioned before, a practical drawback of these methods is the re- 

quirement of a dedicated model in simulation and adjoint mode to 

apply the method in a computationally efficient way within oper- 

ational applications. However, the availability of automatic adjoint 

code generators can overcome this problem ( Seo et al., 2009 ). In 

the context of operational forecasting systems, the variational as- 

similation operates in a batch-processing manner over a time win- 

dow ( Liu and Gupta, 2007 ). The state estimation in this case be- 

comes independent from previous runs as it optimizes over the 

complete assimilation window. The assimilation then repeats for 

the next time step in what is called the Moving Horizon Estima- 

tion (MHE) ( Rawlings, 2013 ). 

Due to its flexible formulation of observation terms, and con- 

gruently less computational effort compared to sequential equiva- 

lents, variational methods become a suitable method to simultane- 

ously assimilate multiple observations. Seo et al., (2203) assim- 

ilated real-time observations of streamflow and precipitation, as 

well as climatological estimates of potential evaporation, through 

a variational approach using the soil moisture states at the be- 

ginning of the assimilation window, together with multiplicative 

adjustment factors to the precipitation and evaporation, as con- 

trol variables. Seo et al., (2009) reported on the implementation 

of such a procedure in operational forecasting systems and com- 

pared the performance with the run-time modifications by human 

forecasters. Lee et al., (2011) implemented a variational approach 

to assimilate streamflow and in situ SM into a gridded Sacramento 

model by updating SM, precipitation and evaporation as in ( Seo et 

al., 2003 ). Moreover, Lee et al., (2012) assimilated several stream- 

flow observations in a distributed hourly model using observations 

at interior points. Abaza et al., (2014) compared sequential and 

variational assimilation of streamflow data in a conceptual model. 

The previous studies use assimilation windows of only a couple of 

days, in the range of the duration of the unit hydrograph. This is 

an insufficient window to properly handle hydrological processes 

with longer time lags such as snow deficits during winter period 

as driver for the snowmelt runoff in spring and early summer. 



Download	English	Version:

https://daneshyari.com/en/article/6380833

Download	Persian	Version:

https://daneshyari.com/article/6380833

Daneshyari.com

https://daneshyari.com/en/article/6380833
https://daneshyari.com/article/6380833
https://daneshyari.com/

