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a b s t r a c t 

Rock permeability has been actively investigated over the past several decades by the geosciences com- 

munity. However, its accurate estimation still presents significant technical challenges, particularly in spa- 

tially complex rocks. In this short communication, we apply critical path analysis (CPA) to estimate per- 

meability in porous rocks from measured mercury intrusion porosimetry and electrical conductivity data. 

Theoretical estimations of various CPA-based models are then compared to experimental measurements 

using eighteen tight-gas sandstones. Except for two of the samples, we find permeability estimations per- 

formed with the Skaggs model (assuming pore diameter independent of its length) more accurate than 

other models, within a factor of two of the measured permeabilities. We discuss some plausible sources 

of the uncertainties. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Accurate estimation of permeability of porous rocks is still of 

great interest, particularly in multi-phase flow and fluid transport 

modeling as well as hydrocarbon production. Numerous empirical, 

semi-physical and physically-based models have been proposed 

to estimate permeability from other rock properties e.g., poros- 

ity (e.g., Kozeny, 1927; Carman, 1937 ), grain-size distribution (e.g., 

Morrow et al., 1969; Koltermann and Gorelick, 1995, Porter et al., 

2013 ), mercury intrusion porosimetry (e.g., Katz and Thompson, 

1986, 1987 ), electrical conductivity (e.g., Johnson et al., 1986; Ba- 

navar and Johnson, 1987 ), and nuclear magnetic resonance (e.g., 

Timur, 1968 ; Banavar and Schwartz, 1987; Glover et al., 2006 ). 

Among theoretical frameworks developed to model permeabil- 

ity, such as bundle of capillary tubes (e.g., Purcell, 1949; Childs 

and Collis-George, 1950; Marshall, 1957; Xu and Yu, 2008 ) and 

effective-medium approximations (e.g., Doyen, 1988; David et al., 

1990; Lock et al., 2004; Ghanbarian and Daigle, 2015 ), critical path 

analysis (CPA) from percolation theory ( Ambegaokar et al., 1971; 

Pollak, 1972 ) appears a reliable method, particularly in heteroge- 

neous and disordered porous media ( Liang et al. 20 0 0; Hunt, 20 01; 

Hunt and Gee, 2002; Arns et al. 2005; Bauget et al. 20 05a, 20 05b; 

Sahimi, 2011; Hunt et al., 2014 ). Ambegaokar et al. (1971) argued 

that fluid flow or transport in disordered media with a broad con- 

ductance distribution is dominated by those with magnitudes that 

are larger than some critical conductance, g c (corresponding to a 

∗ Corresponding author. 

E-mail address: ghanbarian@austin.utexas.edu (B. Ghanbarian). 

critical pore size), which is the smallest conductance among the 

set of conductances, g ≥ g c , forming a sample-spanning cluster. In 

other words, g c is the smallest conductance along the path of least 

resistance through the medium. According to CPA, other finite vol- 

ume fractions of the porous medium make a negligible contribu- 

tion to the overall permeability. Therefore, those zones of low per- 

meability may be eliminated from the medium, which would then 

reduce it to a percolation system ( Sahimi, 2011 ). 

In order to model permeability and electrical conductivity in a 

porous medium, it is necessary to assume specific pore shape and 

geometrical characteristics. Two common pore shapes presumed in 

the literature are cylindrical and slit-shaped. The hydraulic ( g h ) and 

electrical ( g e ) conductances of a cylindrical pore of diameter d and 

length l filled with a fluid of viscosity μ and electrical conductivity 

of σ w 

are respectively ( Banavar and Johnson, 1987 ) 

g h = 

πd 4 

128 μl 
∝ d γh (1) 

and, 

g e = 

πσw 

d 2 

4 l 
∝ d γe . (2) 

Here γ h =4 and γ e =2, if d and l are independent. If pores 

in the medium are self-similar, one may assume d ∝ l , and thus 

γ h =3 and γ e =1 ( Katz and Thompson, 1986 ; Hunt, 2001; Hunt 

et al., 2014 ). 
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For slit-shaped pores of width w much narrower than its 

breadth b and length l Eqs. (1) and (2) change to ( Friedman and 

Seaton, 1998 ) 

g h = 

b w 

3 

12 μl 
∝ w 

γh (3) 

and, 

g e = 

σw 

bw 

l 
∝ w 

γe (4) 

Similarly, γ h = 3 and γ e = 1 if w is independent of l , and γ h =2 

and γ e =0 if w ∝ l . 

Katz and Thompson (1986, 1987) were the first to apply criti- 

cal path analysis to relate permeability, k , to electrical conductiv- 

ity and critical pore diameter. They assumed that in the porous 

medium, cylindrical pore diameter d is linearly proportional to its 

length l ( d ∝ l ) and expressed hydraulic ( g h ) and electrical ( g e ) con- 

ductances as g h ∝ d γh and g e ∝ d γe in which γ h =3 and γ e =1. 

Analogously, one should expect γ h =4 and γ e =2, if d and l are 

independent, e.g., fixed pore length in a pore-network model. 

The Katz and Thompson (1986, 1987) model is given by 

k = 

1 

c 

σb 

σw 

d 2 c (5) 

where σ b is bulk electrical conductivity, σ w 

is saturating fluid 

electrical conductivity, d c is critical pore diameter, and c is a con- 

stant equal to 226 (hereafter, c KT ). Following Chatzis and Dul- 

lien (1977) and de Gennes and Guyon (1978) , Katz and Thompson 

(1986) argued that the inflection point on the mercury intrusion 

porosimetry curve corresponds to the critical pore diameter and 

the saturation at which sample-spanning cluster first forms. In ad- 

dition to the mercury intrusion porosimetry, estimating permeabil- 

ity using Eq. (5) requires the electrical conductivity ( σ b / σ w 

=1/ F 

where F is the formation factor), which may be estimated from 

mercury intrusion ( Katz and Thompson, 1987 ) or water-expulsion 

( Nishiyama and Yokoyama, 2014 ) porosimetry, if not measured. 

Eq. (5) is similar in form to the Johnson et al. (1986) perme- 

ability model i.e., k = �2 /8 F in which � is a characteristic length 

scale, a measure of dynamically connected pore sizes. Martys and 

Garboczi (1992) showed that both � and d c are good predictors 

of permeability k in two-dimensional (2D) pore-network models. 

Particularly, Martys and Garboczi (1992) stated that, “In a random 

pore structure, with a distribution of pore sizes, the flow will tend 

to go more through the largest pore necks, decreasing the impor- 

tance of the narrowest necks that tend to dominate the behavior 

of periodic models.” Although Bernabé and Bruderer (1998) docu- 

mented results similar to Martys and Garboczi (1992) in two di- 

mensions, they found that flow pathways in broadly distributed 

media were not restricted to the backbone or the critical paths. For 

permeability modeling using critical path analysis in highly hetero- 

geneous and disordered media see Shah and Yortsos (1996) . 

More recently, Arns et al. (2005) investigated relationships 

used to estimate permeability from pore size properties in 

Fontainebleau sandstones based on three-dimensional digitized 

images. They considered relationships based on the ratio of pore 

volume to surface area, critical pore diameter (associated with 

mercury intrusion porosimetry data), characteristic pore sizes as- 

sociated with nuclear magnetic resonance relaxation time, T 2 , as 

well as mean survival time. Arns et al. (2005) reported that all 

the investigated relationships provided good agreement with their 

lattice-Boltzmann simulations. However, permeability values esti- 

mated based on critical pore diameter (and critical path analysis) 

were found to be the most reliable ( Arns et al., 2005 ). 

Banavar and Johnson (1987) revisited the Katz and Thompson 

(1986) model and found that the constant coefficient in Eq. (5) was 

equal to 7.68 ×10 −3 ( c BJ =130.2), different from that obtained by 

Katz and Thompson (1986) ( c KT =226). The reason for such dis- 

crepancy is that while Banavar and Johnson (1987) maximized 

the corresponding effective transport coefficient and assumed that 

the electrical conductivity and/or permeability was proportional 

to that maximum value, Katz and Thompson (1986) divided that 

maximum value by the corresponding maximizing pore size (see 

Banavar and Johnson (1987) for further details). 

Following the results of Ty ̌c and Halperin (1989) on random re- 

sistor networks with widely distributed conductances, Le Doussal 

(1989) , and more recently Skaggs (2011) proposed the relationship 

k = 

1 

32 

[
γh 

γe 

]−y 
σb 

σw 

d 
γh −γe 

c = 

1 

c 

σb 

σw 

d 2 c (6) 

Le Doussal (1989) argued that the prefactor exponent 

y = ν = 0.88 ( ν is the universal correlation length exponent from 

percolation theory) in three dimensions. However, subsequent 

numerical simulations of critical path calculation of the conduc- 

tivity on random resistor networks indicated that y < ν . Skaggs 

(2003) showed that the observed y < ν is due to the effects of 

finite heterogeneity, not finite size, and found y = 0.74 ±0.01 by 

means of Monte Carlo simulations. 

The values of the Le Doussal (1989) and the Skaggs (2011) con- 

stant coefficients (hereafter, c L and c S ), the numerical prefactor cor- 

responding respectively to y = 0.88 and 0.74 in Eq. (6) , under differ- 

ent circumstances are given in Table 1 . As can be observed, the c L 
value differs from c KT by a factor of 3 or 4, depending on the re- 

lationship between pore diameter d and its length l . We also list 

other values of c proposed by Banavar and Johnson (1987) and 

Friedman and Seaton (1998) in Table 1. 

To the best of the authors’ knowledge, neither the Le Doussal 

(1989) nor the Skaggs (2011) model has been evaluated experi- 

mentally in porous rocks. Therefore, the main objective of this pa- 

per is to compare the permeability estimated from the measured 

mercury intrusion porosimetry and the electrical conductivity data 

using CPA-based models e.g., Katz and Thompson (1986) , Banavar 

and Johnson (1987) , Le Doussal (1989) , and Skaggs (2011) with the 

measured value. 

2. Materials and methods 

In order to compare CPA-based models in their estimation of 

permeability, 18 tight-gas sandstones were selected for the study. 

Samples were cut from whole core retrieved in a tight-gas sand- 

stone formation located in East Texas. Table 2 summarizes the 

salient properties of each rock sample. In all samples, permeabil- 

ity was measured by gas flow and corrected (extrapolated to in- 

finite pressure) by the Klinkenberg method (1941) . Mercury in- 

trusion porosimetry was used to determine the pore throat-size 

distribution of each sample. Following Katz and Thompson (1986, 

1987) , we determined the critical pore diameter from the inflection 

point on the mercury intrusion porosimetry curve (see Fig. 1 from 

Katz and Thompson, 1986 ) assuming that pore shape is cylindrical. 

For this purpose, we fit a spline to the measured mercury intrusion 

porosimetry data and numerically calculated the inflection point in 

MATLAB. Such a method, however, failed to distinguish the critical 

pore diameter correctly due to local scatter in mercury intrusion 

porosimetry measurements in 5 samples denoted in Table 2 . We 

show the cumulative pore volume, V, and the difference in pore 

volume, �V , as a function of pore diameter, d, for samples 2 and 

18 in Fig. 1 . We observe that the �V - d relationship for sample 2 is 

smooth, while it is scattered for sample 18, particularly around the 

peak, which causes uncertainties in the d c determination. Follow- 

ing Hofer et al. (2011) , in those 5 samples we instead fit the van 

Genuchten capillary pressure curve model ( van Genuchten, 1980 ) 
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