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Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific
research community toward subsurface investigations of ever-increasing complexity. This review explores
various approaches to formulate and solve inverse problems in ways that effectively integrate geological con-
cepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce
multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock
physics can be used to map these realizations into physical properties that are sensed by the geophysical
or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface re-
alizations that are in agreement with the data. The most general inversion frameworks are presently often
computationally intractable when applied to large-scale problems and it is necessary to better understand
the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the
physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse prob-
lem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions
given today’s computer resources and knowledge. We also highlight the need to not only use geophysical
and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate
alternative geological scenarios.
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1. Introduction

Geophysical data help to understand geological processes and to
test scientific hypotheses throughout the Earth Sciences, while also
providing critical information and constraints for forecasting and
management of subsurface formations (e.g., oil and gas reservoirs,
mineral prospects, aquifers, and the critical zone). The processing of
virtually all geophysical surveys involves inversion, a computational
process in which measurement responses (e.g., signals in time and
space for seismic and electromagnetic data) are translated into multi-
dimensional images of physical properties (e.g., seismic wavespeed,
density, electrical conductivity) [124,165] or into properties of direct
relevance for geological applications (e.g., lithotype, porosity, fluid
saturation) [11-13]. Subsurface heterogeneity, signal attenuation, av-
eraging inherent to the underlying physics (e.g., diffusion), incom-
plete data coverage and noisy data limit the scale at which these
properties can be resolved [6].
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Solute transport in the subsurface can be highly sensitive to ge-
ological features (e.g., fractures [2] or connected high conductivity
forms [174]) at scales below the resolution limits offered by geophys-
ical sensing. Resolution-limited geophysical models alone are thus
often inadequate for applications related to mass transfer in the sub-
surface (oil, gas, water). Even if improved geophysical acquisition sys-
tems and imaging algorithms allow resolving ever-finer details, fun-
damental resolution limits persist. At the high resolution necessary
for flow- and transport modeling, the geophysical inverse problem
has a possibly infinite set of solutions.

This non-uniqueness is traditionally overcome by using an op-
timization approach with a model regularization term, thereby
focusing solely on model features that are necessary to explain the
geophysical data [32]. Such a regularization term generally lacks
geological justification and results in blurry models that are overly
smooth and geologically unrealistic [42]. One step forward is to arti-
ficially introduce fine-scale information by adapting multi-Gaussian
geostatistical models that describe the correlation between two
points in space throughout the volume of investigation (we refer to
Chilés and Delfiner [23] for a general introduction to geostatistics).
However, similar to the overly smooth models obtained by regular-
ized inversion, the multi-Gaussian framework is often insufficient to
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describe realistic geological structure and especially those impacting
flow responses [49,57,89,95].

In many cases, the measured hydrogeological or geophysical data
can be complemented by ancillary information on the heterogeneity
of subsurface formations that is obtained from borehole data, analog
outcrops or databases of previously studied sites. Expert knowledge
is also important. For example, sedimentologists may provide geolog-
ical descriptions of the architecture of rock facies, their mutual spatial
relationships, geometrical constraints or rules of deposition. In appli-
cations where supporting data are sparse and the geological context
is unclear, it is perhaps even more important to assimilate and for-
mally test competing conceptual geological models [49,109,134].

This review describes existing approaches to incorporate prior ge-
ological understanding in the inversion of geophysical and hydrogeo-
logical data to better predict subsurface flow- and transport processes
at relevant temporal and spatial scales. This assimilation problem is
at the forefront of many exploration, environmental, and research
challenges of relevance for the Earth Sciences. Research in the area
is very active, but publications are widely spread over various disci-
pline journals with little interaction across disciplines (e.g., oil/gas vs.
groundwater). Only a few attempts have been made to bridge these
community gaps (e.g., [82]).

The presentation is structured as follows. Section 2 formulates
the inverse problem as the integration of the information offered by
geophysical and hydrogeological data, their relationship, and an un-
derlying conceptual Earth model. Section 3 describes approaches to
create geologically realistic priors and how to generate geologically
realistic realizations by sampling this prior. Section 4 introduces
approaches on how to parameterize models and propose model
updates that are representative samples of a geologically realistic
prior. Section 5 reviews how the inverse problem can be solved
in the general case using sampling techniques and under more
approximate conditions using stochastic search and optimization.
Section 6 proposes two alternative strategies for bringing the various
pieces (Sections 3-5) together in solving practical field cases. Section
7 provides concluding remarks.

2. The inverse problem
2.1. General formulation

Tarantola and Valette [167] formulated the general nonlinear in-
verse problem as a combination of the information provided by N
data, d, by a priori information about M model parameters, m, and
by theories that relate the two p(m, d). In the following, a slightly
less general formulation is considered that is based on a traditional
Bayesian framework [86].

The posterior probability density function (pdf) p(m|d) is

p(djm)p(m)
pd)

where L(m|d) = p(d|m) is the likelihood function that typically sum-
marizes the statistical properties of the error residuals between ob-
served and simulated data and p(m) is the prior pdf. The evidence
p(d) is important for model selection and averaging, but it can be
neglected when considering a fixed model parameterization. In this
case, the unnormalized density suffices

p(m|d) = (1)

p(m|d) oc L(m|d)p(m). 2)

The solution to the inverse problem can be represented as a
closed-form expression of p(m|d), an approximation based on sam-
ples from this distribution or one representative model obtained by
optimization.

2.2. The likelihood

The forward problem consists of simulating the data response dsim
of a proposed model mP™P

dm = g(mP). 3)

The forward simulator g( — ) typically involves numerical simula-
tions based on a physical theory (e.g., the advection-dispersion equa-
tion to predict tracer breakthrough curves or the electromagnetic
wave equation to simulate ground-penetrating radar responses).

Assuming that measurement and modeling errors follow a Gaus-
sian distribution, the likelihood function is

1
—@m)Mdet (Cp) '

xexp(~ 5 (gm) —d - bo)" Gy (g(m) ~d ~ o) ), (4)

where Cp is a covariance matrix given by the sum of the covariance
matrices describing modeling C; and observational errors C4 (e.g.,
[165]) and bp = by + by describing bias terms associated with mod-
eling and observational error distributions that are not centered on
zero [64].

It is common practice to assume that both data and modeling er-
rors are uncorrelated, thus, making Cp a diagonal matrix. This choice
is often made out of convenience and because it is challenging to
determine proper error models of field data (observational and ge-
ometrical errors) and forward solvers (simplified physics, numeri-
cal approximations, effects of parameterization, etc.). Gaussian error
models are very sensitive to outliers and alternative distributions, for
example, symmetric exponentials may provide more robust results
(e.g., [26]). Furthermore, replacing Cp with a diagonal matrix and ig-
noring bias terms can lead to important inversion artifacts [64], but
determining Cp and by can be very challenging in practice. One ap-
proach is to use a computationally expensive, but physically correct
forward simulator, to build an error model that is used in subsequent
inversions that rely on simplified forward models [64]. Another ap-
proach is to approximate these errors with an assumed functional
form, while inferring parameter values (e.g., those in an autoregres-
sive model) during the inversion process [155].

Furthermore, statistical rock physics models can be included in
the likelihood function (e.g., [41]) to link physical properties (sensed
by geophysical data) and hydrogeological target properties. These re-
lationships are often more straightforward when dealing with time-
lapse data (i.e., monitoring of geophysical variables over time). Statis-
tical rock physics is an area of active research. At present, the spatial
support and correlation of the scatter in rock physics relationships,
their scaling as a function of observational scale, and how parame-
ters vary in space are often largely unknown.

L(m|d)

2.3. The prior

In its simplest form, the M model parameters refer to mate-
rial properties in a regular mesh. In this case, the standard multi-
Gaussian description of the prior pdf p(m) takes a similar form as the
likelihood function [165]

1
= e.
2m)M2det (Cy)'"?

p(m) xp(~5(m - mo)'C;/ (m —mo) ).

(5)
with Cy; the model covariance matrix describing the spatial correla-
tion between model cells and mg the expected value of the model
parameters. Assuming a multi-variate distribution of the prior will
strongly influence the spatial characteristics of the posterior solu-
tions. A Gaussian prior with a Gaussian likelihood function leads, in
the linear case, to an explicit pdf for the posterior which is also Gaus-
sian (e.g., [165]). Similarly, a Gaussian mixture prior with a Gaussian
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