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a b s t r a c t

Quasi-1D mobile–immobile transport processes which have exponentially distributed random waiting times

in both mobile and immobile states are common in hydrologic models (for example, of transport subject to

kinetic sorption). The central limit theorem implies that eventually such transport will be expressible with

an effective ADE (i.e. a generalization of the common retardation factor approach with an added Fickian dis-

persion coefficient accounting for the effect of trapping). Previous works have determined formulae for the

value of this coefficient based on the transport properties. However, the time until convergence to Gaussian

behavior has not previously been quantified. To this end, exact Green’s functions characterizing the trans-

port at all times are derived for the case of pure advection. The Green’s functions are expressed in terms of

three dimensionless parameters, representing location, time, and capacity coefficient. In the pre-Gaussian

regime, a parametric study characterizing concentration profile asymmetry as a function of the capacity co-

efficient is performed. Next, heuristics are presented in terms of the dimensionless parameters for the time

until the effective ADE adequately reflects reality. For strongly retarded solute, the time until effective ADE

validity is found inversely proportional to release (e.g., desorption) rate. The nature of the effective disper-

sion coefficient is examined, and the possibility of large trapping-driven dispersion even in cases where batch

experiments would detect negligible trapping is demonstrated. Collectively, these results call into question

reliance on retardation factors derived from batch experiments for many practical transport modeling efforts;

knowledge of both the trapping and release kinetics appears essential.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Mathematical treatment of mobile–immobile processes

In many subsurface solute transport scenarios, there may be two

spatially coextensive domains that are out of equilibrium with each

other, each having its own local concentration. Commonly this is seen

in models where solute advects only when it is in one, “mobile”, state

(i.e. domain), with concentration c(x, t), but can also sometimes be

trapped in an “immobile” state, which has its own concentration,

cim(x, t), and from which it is eventually released. These models may

be expressed with the following set of equations:

∂c

∂t
(x, t) + ∂cim

∂t
(x, t) = F{c}(x, t)

∂cim

∂t
(x, t) = G{c, cim}(x, t), (1)
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where F is a linear differential operator representing some com-

bination of advection, dispersion, and decay, and G is an arbitrary

operator. There are a number of different causes of this sort of

mobile–immobile non-equilibrium transport: including so-called

chemical and physical non-equilibrium, as well as diffusion into

porous media [1]. Both the standard chemical and physical non-

equilibrium equations, though arising through different conceptual

pictures, may be put into an equivalent mathematical form [2], where

in our notation we define

G{c, cim} ≡ λc − μcim. (2)

Here λ represents the probability per unit time that a mobile parti-

cle will become immobile, and μ represents the probability per unit

time that an immobile particle will become mobile. A variety of dual-

porosity transport problems can also be modeled in this way [3]. In

addition, local equilibrium sorption with a distribution of retardation

factors has been shown, when upscaled, to be expressible in the same

form [4].

In our analysis, we shall employ an alternative ex-

pression for G (which we call G∗), previously used by
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Margolin et al. [5]:

G∗{c} ≡ λc − λ

∫ t

0

ψim(τ )c(x, t − τ)dτ, (3)

which eliminates cim as a dependent variable but introduces time

non-locality. As in (2), λ is a spatially homogeneous probability per

unit time that a mobile particle will become immobile. Here, ψ im(t)

is an arbitrary probability distribution for the length of a single so-

journ in the immobile phase. Substituting this into (1) leads to the

integrodifferential equation

∂c

∂t
(x, t) = F{c}(x, t) − λc(x, t) + λ

∫ t

0

ψim(τ )c(x, t − τ)dτ. (4)

Similar forms have been used by Schumer et al. [6] to define what the

authors call the fractal mobile–immobile (fMIM) paradigm, by Hag-

gerty et al. [7] in the analysis of late-time BTC tails in the presence of

trapping processes, and by Benson and Meerschaert [8] in their de-

velopment of subordination technique for incorporating anomalous

transport into ADE-based numerical models.

In the Laplace domain, it is not difficult to show that Eqs. (1) and

(2) are equivalent to (4) so long as

ψim(t) = μe−μt . (5)

While more general forms of ψ im than (5) correspond to some physi-

cal systems, we restrict our attention to first-order mobile–immobile

behavior, and so will use (4) and (5) as the basis for all analysis.

Note that this model implicitly defines a comparable probability

distribution,

ψm(t) = λe−λt , (6)

for the time taken by a single sojourn in the mobile phase (i.e. time

interval between release and subsequent capture). This particular

model, with exponentially-distributed times in both the sorbed and

free states, has found wide application in the literature: applications

are found in the sediment transport literature [9,10], as well as in

analysis of solute trapping [8,11].

1.2. Trapping-driven dispersion, breakthrough curve asymmetry, and

effective ADE models

Commonly, transport for each solute particle, including the

random trapping, is independent of all other particles. Where this

trapping is a result of diffusion into an immobile zone, this is assured.

For kinetic sorption, where there exists a great excess of sorption

sites, it is justified as well, although in cases of competitive sorption

(i.e. limited sites), this may not be the case. Any random transport

process that acts independently on different particles must have a

dispersive effect, and indeed: the dispersive effect of kinetic sorption

has long been recognized in the chromatography literature, dating

back at least to [12]. In the subsurface transport literature, some

theoretical studies quantifying the dispersive effects of mobile–

immobile systems have been published. Late-time first, second,

and third temporal moments of breakthrough curves for advective-

dispersive subsurface solute transport subject to first-order chemical

and physical non-equilibrium were considered by Valocchi [2]. A

similar moment analysis, except deriving spatial moments was later

performed by Michalak and Kitanidis [13]. The authors further com-

puted effective late-time velocities and dispersion coefficients. These

studies were in 1D, and focused on late time limits in the case when

(2) holds, and are in the school of classic mobile–immobile zone

models with exponential ψ im. Recently, Uffink et al. [11] employed

random walk theory to derive an equivalent PDE to (4), and manipu-

lated the equation to derive the same late-time dispersion coefficient

shown in [13]. To our knowledge, they were the first to remark that

λ and μ may affect the rate of late-time Gaussian convergence, but

did not pursue this systematically, save for providing an approximate

time until the effective dispersion coefficient stabilizes.

Related to the discussion of trapping-driven dispersion is a body

of literature on the so-called local equilibrium assumption (LEA). The

LEA essentially refers to conditions under which the trapped and free

concentrations are related by the same ratio at all times [14]. In our

terminology, we express this as c(x, t) + cim(x, t) ≈ Rc(x, t), for some

constant, R, referred to as a retardation factor. By substitution of R into

(1), one arrives at the retarded transport equation:

R
∂c

∂t
(x, t) = F{c}(x, t). (7)

It is apparent that this form simply rescales time (R can be eliminated

by a substitution τ ≡ t/R), and so the dispersive effect of trapping is

not considered. Nonetheless, some authors conflate applicability of

the local equilibrium assumption with usage of a retarded transport

equation (e.g. [15]). There are some circumstances under which this is

reasonable, namely those in which F is an advection–dispersion oper-

ator representing a stronger source of dispersion, compared to which

trapping-driven dispersion is negligible.

The LEA has been widely studied, with aforementioned paper [2]

aiming to validate it by comparing moments, at late time, of ex-

act solutions for chemical and physical non-equilibrium with a re-

tarded advection–dispersion equation. A different approach, seeking

directly to find conditions under which local equilibrium is nearly

satisfied at a point and relating that to parameters in a system like

(1) has also been presented [16]. Later, Wallach examined the do-

main of validity of the LEA through perturbation theory, treating (7)

as an end member in a perturbation expansion for the exact solution

which contains trapping-driven dispersion [17]. All of these authors,

and many others (see the literature review in [16]) identified condi-

tions under which the dispersive effect of sorption was comparatively

negligible.

However, since Michalak and Kitanidis [13] computed the ef-

fective, late time dispersion coefficient for classic mobile–immobile

systems, there is now a more flexible framework available than

the dispersion-ignoring LEA approximation. Mobile–immobile solute

transport may be treated at late time by a retardation coefficient and

this effective dispersion coefficient, even in cases where trapping-

driven dispersion cannot be ignored. We term such an approach an

effective ADE model.

An effective ADE model still cannot apply in circumstances in

which there is a significantly asymmetric transport Green’s function,

however, since the Green’s function for the ADE is Gaussian. Further,

it is well known that in many trapping-and-release processes, plume

asymmetry occurs. Uffink et al. [11] showed how this develops in a

system described by (1) and (2).

Since consideration of mobile–immobile problems is so com-

mon in contaminant hydrogeology, there are naturally many alter-

natives to the effective ADE approach, including exact solutions for

specific geometries. A comprehensive survey is beyond the scope

of this work, but classes of techniques include analytic solutions

such as those included in the aforementioned van Genuchten pa-

per [3], analytic solutions that treat discrete fractures [18,19], and

by multi-rate mass transfer schemes [20]. Numerical approaches that

treat multiple interacting continua [21,22] are also useful for specific

problems.

Lastly, it bears noting that in addition to being indicative of early-

time mobile–immobile behavior for exponential ψ im, asymmetry

may be caused by power-law distributed immobile times [23], as well

as non-sorbing transport in heterogeneous media [24]. The difficulty

of distinguishing between mobile–immobile models and transport in

heterogeneous media has been remarked upon by Carrera et al. [25],

among others. This implies that CTRW approaches [24] represent an-

other viable approach for modeling mobile–immobile systems. Ex-

perimentally, at the column scale, asymmetric breakthrough curves

have been examined using CTRW approaches by Deng [26] and Li and

Ren [27]. This sort of behavior may arise due to anomalous transport
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