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a b s t r a c t

We develop an experimental design algorithm to select locations for a network of observation wells that

provide the maximum robust information about unknown hydraulic conductivity in a confined, anisotropic

aquifer. Since the information that a design provides is dependent on an aquifer’s hydraulic conductivity, a

robust design is one that provides the maximum information in the worst-case scenario. The design can be

formulated as a max–min optimization problem. The problem is generally non-convex, non-differentiable,

and contains integer variables. We use a Genetic Algorithm (GA) to perform the combinatorial search. We

employ proper orthogonal decomposition (POD) to reduce the dimension of the groundwater model, thereby

reducing the computational burden posed by employing a GA. The GA algorithm exhaustively searches for

the robust design across a set of hydraulic conductivities and finds an approximate design (called the High

Frequency Observation Well Design) through a Monte Carlo-type search. The results from a small-scale 1-D

test case validate the proposed methodology. We then apply the methodology to a realistically-scaled 2-D

test case.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

Hydraulic conductivity is one of the most important parameters

to take into account when modeling an aquifer. Unknown hydraulic

conductivities can have drastic effects on the reliability of ground-

water model results. Estimating these unknown hydraulic conduc-

tivities through inverse modeling is an important area of research

in groundwater modeling. Solving the inverse problem requires field

observations of head. However, collecting good observations is ex-

pensive, time consuming, and difficult, particularly if aquifer param-

eters vary spatially. As a result, inverse modeling always faces an ob-

servation scarcity problem. Given an infinite budget, we could take

observations at infinitesimally fine spatial and temporal resolutions;

however, in the real world there are budget constraints on the num-

ber of experiments (observations) that can be conducted. In general,

the goal of optimal experimental design for parameter estimation

is to select the observation locations and sampling frequency such

that a specified criterion is optimized subject to a set of constraints.

The constraints frequently encountered are cost, reliability of the es-

timated parameters, and time and duration of the experiments. In
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groundwater modeling, if one assumes that observations are taken

from the beginning of the pumping test to the end, the experimen-

tal design problem is simplified to the determination of a network

of observation locations. The most commonly used criterion for op-

timal experimental design is the maximization of a measure of the

information matrix. This formulation generally lends itself to a com-

binatorial optimization problem that is nonlinear and non-convex.

We then can determine the tradeoff between number of experiments

and amount of useful information collected by varying the number

of experiments and evaluating the amount of useful information re-

ceived for each experiment. While the concept of experimental de-

sign for parameter estimation in the context of groundwater mod-

eling has been investigated extensively, the combinatorial search re-

quired to solve for the optimal observation network of observations

has challenged many studies. A realistic, highly discretized, large-

scale groundwater model, referred to in this paper as the full model,

may have tens or hundreds of thousands of nodes and a resulting

equivalent number of equations. As a consequence, the dimension of

the combinatorial search quickly becomes so large that it is infeasi-

ble to solve through mathematical programming techniques such as

mixed integer nonlinear programming. Thus other methods are re-

quired to solve this optimization problem. Genetic Algorithms (GAs)

are one of a number of methods that have been developed over the

years to solve large-scale optimization problems that are difficult or

impossible to solve through traditional mathematical programming

techniques. GAs do not require the calculation of derivatives and also
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Nomenclature

A ∈ RNn×Nn stiffness matrix for the full model

Ã ∈ RNp×Np stiffness matrix for the reduced model

A(k) ∈ RNn×Nn matrix representing the system of linear

equations in the full model

Ã(k) ∈ Rnp×np matrix representing the system of linear

equations in the reduced model

B ∈ RNn×Nn mass matrix for the full model

B̃ ∈ Rnp×np mass matrix for the reduced model

b ∈ RNn vector describing the forcing of the full

model

b̃ ∈ RNn vector describing the forcing of the reduced

model

χ matrix of snapshots collected at some hy-

draulic conductivity k

d scaling factor for the residual

F specific volumetric pumping rate

�Kj perturbation of the jth hydraulic conductiv-

ity

�k j ∈ Rnz vector perturbing the jth hydraulic conduc-

tivity

�oi change in the ith observation

�θ j perturbation of the jth parameter

�θj ∈ RN vector perturbing the jth parameter

f1, f2, f3 known functions describing initial and

boundary conditions of an aquifer

e error between the full and reduced model

�1 fixed head boundary

�2 flux boundary

H ∈ RNn×nsp vector of initial head values

h ∈ RNn×nsp vector of head values

HFO high frequency observation well design

I ∈ Rnq×nq information matrix calculated by Jd
T∗Jd∗W

Jd ∈ Rnobs×nq Jacobian matrix containing only the obser-

vations of interest to all wells

Jdi, j
i,jth element in Jd

K ∈ Rnz×n
nz
l matrix of columns storing all parameter

combinations to be searched

Ki hydraulic conductivity in the ith direction

K̂ the space of feasible hydraulic conductivi-

ties

k ∈ Rnz vector of hydraulic conductivities

M ∈ Rnobswell×Nn observation matrix isolating the rows of P

corresponding to some ω
� ∈ RNn×Nn matrix containing the eigenvalues of X

L length unit (meters, feet, etc.)

N total number of parameters of interest

nl number of parameter increments

Nn number of nodes in the full model

nobs total number of observations taken

nobswell maximum number of allowable observation

wells

np number of principal components used in the

reduced model

nsp number of snapshots taken for each pump-

ing well to build the reduced model

nz number of hydrologic zones with unknown

hydraulic conductivity

P ∈ RNn×np full projection matrix

P̂ ∈ RNn×nsp principle vectors of a particular set of snap-

shots

PDE partial differential equation

� the space of all feasible sets of observation

well locations

ω ∈ Rnobswell vector contacting some feasible set of obser-

vation well locations (ω⊂�)

ω̂ ∈ Rnobs×n
nz
l the set of all ω̃i

ω̂+1 ∈ Rnobs×n
nz
l

+1 ω̂ plus the HFO design

ω∗ ∈ Rnobswell the optimal experimental design solution

given the true aquifer parameters

ω̃i ∈ Rnobswell ith solution output by the GA

ω̃( j)
i

jth location in ω̃i

ODE ordinary differential equation

oi ith observation

oi(θ) ith model simulated value using the param-

eter values in θ
Q matrix containing the eigenvectors of X

q ∈ RNn vector of sinks for the full model

qn specific discharge normal to the flux bound-

ary (�2)

R(k) ∈ Rnp×nobs matrix containing the reduced solution at

the observation times

r ∈ Rnp vector of the reduced solution at time t

re the residual between the full and reduced

model

s ∈ RNn×nsp vector of drawdown values

si ith drawdown value

� ∈ Rnp×np diagonal matrix containing the singular val-

ues of X

Ss specific storage

ŝt ∈ RNn vector of the approximation of st

SVD singular vale decomposition

T time unit (days, hours, etc.)

τ error tolerance

θ ∈ RN vector of nominal parameter values

θ j jth parameter

Ṽ ⊂ RNn subspace spanned by the columns of P

V ∈ Rnp×np matrix containing the right singular vectors

of X

W ∈ Rnq×nq some user specified weighting matrix used

in calculating I

X ∈ RNn×np matrix containing all collected snapshots

x ∈ RNn vector of binary variables indicating if a

node has an observation well

xi ith element in x

zone j all the nodes in the jth observation zone

can deal with discontinuous functions. While GAs have been used by

a number of studies to design optimal observation networks using

various optimality criteria [1–3], many of these studies were chal-

lenged by the fact that GAs require a large number of model calls.

Thus for a highly discretized groundwater model, using a GA to de-

sign an optimal observation network may be computationally ineffi-

cient, even infeasible. To overcome this, we apply a proper orthogo-

nal decomposition (POD) model reduction to the groundwater model

to reduce its spatial dimension. POD is an effective model reduction

technique that maintains the physics of the groundwater model. In

many instances it has been shown that the reduced model is orders

of magnitudes smaller than the original full model and runs 1,000

times faster. Since the parameters themselves are to be estimated,

we develop a parameter-independent reduced model for the optimal

experimental design. By doing this, we are able to reduce an inordi-

nately large-scale, combinatorial optimization problem to a manage-

able size.
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