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a b s t r a c t

We investigate the influence of aggregation and deposition on the colloidal dynamics in a saturated porous

medium. On the pore scale, the aggregation of colloids is modeled by the Smoluchowski equation. Essentially,

the colloidal mass splits into different size clusters and we treat clusters as different species involved in a

diffusion–reaction mechanism. This modeling procedure allows for different material properties to be varied

between the different species, specifically the diffusion rate, which changes due to size as described by the

Stokes–Einstein relation, and the deposition rate. The periodic homogenization procedure is applied to obtain

a macroscopic model. The resulting model is illustrated by numerical computations that capture the colloidal

transport with and without aggregation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Colloids are particles with size from 1 to 1000 nanometers in at

least one dimension.Colloidal particles play an important role in tech-

nological and biological applications, such as waste water treatment,

the food industry, printing etc. The central topic of this paper is the

treatment of aggregation that has been shown to be an important fac-

tor in contaminant transport [34].

A good discussion on aggregation can be found in [28]. A thorough

analysis of the aggregation in terms of ordinary differential equations

can be found in [6].

Note that similar aggregation patterns emerge in pedestrian flows

[25]. Previous investigations into this topic that don’t take aggrega-

tion into account can be found in [17] and [35].

In this paper we study the influence of aggregation and deposition

on the colloidal dynamics in a saturated porous medium. On the pore

scale, we model the aggregation of colloids by means of the Smolu-

chowski equation. Following the Smoluchowski mechanism, the col-

loidal mass splits into different size clusters and we treat clusters as

different species involved in a diffusion–reaction mechanism. This

modeling procedure allows for different material properties to be

varied between the different species, specifically the diffusion rate,

which changes due to size as described by the Stokes–Einstein rela-

tion, and the deposition rate. Our main target is to upscale the overall
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system and detect the effect of aggregation on the effective trans-

port coefficients. We proceed by applying the periodic homogeniza-

tion asymptotics to obtain the structure of the macroscopic model

and the calculation rules of all the effective coefficients. The result-

ing model is illustrated by numerical computations that capture the

colloidal transport with and without aggregation.

The outline for the paper is as follows: In Section 2 a microscopic

pore-scale model is set up for aggregation, diffusion and deposition

of colloidal particles. In Section 3 the microscopic model is nondi-

mensionalized. In Section 4 we use two-scale asymptotic expansion

to obtain an equivalent macroscopic model.

In Section 5 some numeric experiments are presented.

2. Microscopic model

The foundations of aggregation modeling were laid down in the

classical work of Smoluchowski [33]. A nice overview can be found

in [9].

Here we assume that the colloidal population consists of identical

particles, called primary particles, some of which form aggregate par-

ticles that are characterized by the number of primary particles that

they contain – i.e. we have u1 particles of size 1, u2 particles of size 2,

etc. We refer to each particle of size i as a member of the ith species.

The fundamental assumption is that aggregation is a second-order

rate process, i.e. the rate of collision is proportional to concentrations

of the colliding species. Thus Aij – the number of aggregates of size

i + j formed from the collision of particles of sizes i and j per unit

http://dx.doi.org/10.1016/j.advwatres.2015.10.005

0309-1708/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.advwatres.2015.10.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2015.10.005&domain=pdf
mailto:o.krehel@tue.nl
http://dx.doi.org/10.1016/j.advwatres.2015.10.005


210 O. Krehel et al. / Advances in Water Resources 86 (2015) 209–216

Fig. 1. Microstructure of �ε (isotropic case on the left, anisotropic case on the right). Yij is the periodic cell.

time and volume, equals:

Ai j := γi juiu j, with (1)

γi j := αi jβi j. (2)

Here β ij is the collision kernel – rate constant determined by the

transport mechanisms that bring the particles in close contact, while

αij ∈ [0, 1] is the collision efficiency – fraction of collisions that finally

form an aggregate. (Table 2)

The coefficients αij are determined by a combination of particle-

particle interaction forces, both DLVO (i.e. double-layer repulsion and

van der Waals attraction) and non-DLVO, e.g. steric interaction forces

(see [8,12]).

A choice for αij and β ij can be found in [18]. The reaction rates, or

population balances can be written as:

Ri(u) = 1

2

∑
i+ j=k

αi jβi juiu j − uk

∞∑
i=1

αkiβkiui, (3)

where u = (u1, . . . , uN, . . . ) is the vector of concentrations for each

size class.

The colloidal species ui, defined in � (see Fig. 1), can deposit on

the boundary of the solid matrix � ⊂ ∂�, transforming into immobile

species vi, defined on �. This means that the colloids of different size

can be present both in the bulk and on the boundary. The boundary

condition for � then looks like:

−di∇ui · n = Fi(x, ui, vi). (4)

At this stage, we assume the deposition rate Fi to be linear:

Fi(x, ui, vi) = aiui − bivi. (5)

This resembles the structure of Henry’s law acting in the context

of gas exchange at liquid interfaces [4]. The Eq. (5) closes the model,

and the final system, is then as follows:

∂t ui + ∇ · ( − di∇ui) = Ri(u) in Ω, (6)

∂tvi = aiui − bivi on Γ , (7)

with the boundary conditions

−di∇ui · n = aiui − bivi on Γ , (8)

−di∇ui · n = 0 on ΓN, (9)

ui = 0 on ΓD, (10)

and the initial conditions

ui(0, x) = u0
i (x) in Ω, (11)

vi(0, x) = v0
i (x) on Γ . (12)

2.1. Diffusivity coefficients for clusters

We take the diffusivity of the monomers d1 as a baseline. All other

diffusivities depend on d1, in accordance with the Einstein–Stokes

relation:

di = kT

6πηri

. (13)

di in (13) are designed for diffusion of spherical particles through

liquids of low Reynolds number. Note the following dependence of

the aggregate radius ri on the number of monomers contained in the

i-cluster:

ri = idr1. (14)

Here d = 1/DF and DF is a dimensionless parameter called the

fractal dimension of the aggregate [23]. DF shows how porous the ag-

gregate is. So a completely non-porous aggregate in three dimensions

would have DF = 3. Combining (13) and (14), we obtain:

di = 1

id
d1. (15)

3. Nondimensionalization

Let t := τ t̃, and x := Lx̃, and di := dd̃i, and ui := u0ũi, and vi :=
v0ṽi, and ai := a0ãi, and bi := a0u0

v0
b̃i.

Note that we need to distinguish between u0 and v0 since they

have different dimensions, i.e. volume and surface concentration,

respectively. After substituting into (6) and (7), and dropping the

tildes:

∂t ui + τd

L2
∇ · ( − di∇ui) = τu0Ri(u), (16)

−di∇ui · n = a0L

d
(aiui − bivi), (17)

∂tvi = τa0

v0

u0(aiui − bivi). (18)

We denote
a0L

d
to be a small quantity ε, that is also related to the

ratio of geometry scales. We choose to scale the system with τ := L2

d
– the characteristic time scale of diffusion. This leads to two other

dimensionless numbers – the Thiele number Λ := L2

d
u0 and the Biot

number Bi := a0
L2

d

u0
v0

. We should note that these numbers don’t have

oscillations in them, i.e. they don’t depend on ε. The final system that

we obtain is:

∂t ui + ∇ · ( − di∇ui) = ΛRi(u),

−di∇ui · n = ε(aiui − bivi),

∂tvi = Bi(aiui − bivi).
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