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a b s t r a c t

Iterative ensemble techniques for solving inverse problems has recently gained a lot of interest in many geo-

physical communities. This popularity is attributed to the simplicity of implementation, general reliability

and the ability to deal with the forward model as a black box without requiring the implementation of an-

alytical gradients. Although several variants exist, we focus on the ensemble smoother with multiple data

assimilation. This study highlights the similarity between the ensemble smoother and other existing tech-

niques such as particle flow and annealed importance sampling. It is shown how a sequential Monte Carlo

sampler can be used in combination with an annealing process to weight-correct the sampling procedure

used in the ensemble smoother. Two different approximations in high dimensions, where the curse of di-

mensionality is unavoidable, are also presented. The methods proposed are compared with an MCMC run on

a synthetic reservoir model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse problems arise in many geosciences such as reservoir

engineering, hydrology, atmospheric chemistry and oceanography.

Common for all these areas is that the numerical model describing

the dynamics of the physical models are defined on a very large scale.

The order of unknown parameters and/or variables is usually at least

O(102) and could reach O(1012). Even for the moderate case, the di-

mension of the parameter space and/or state space is too large for

standard Bayesian inversion/filtering utilizing variants of MCMC [30]

or sequential Monte Carlo methods [13]. A relatively new MCMC ap-

proach was proposed in [10]. The proposed method has the advantage

over standard Metropolis Hastings implementation in the sense that

only the likelihood and not the product of the prior and the likelihood

has to be evaluated in the accept-reject step. This can be a huge ad-

vantage if the prior is only known implicitly or if measurements are of

much lower dimension than the parameters/state vector. Although it

was demonstrated that it converges faster than old algorithms, there

is still a consensus in the geoscience community that MCMC methods

are too time consuming for large scale applications [27] unless some

proxy model or dimension reduction technique is used. Sequential

Monte Carlo methods, also known as particle filter [13], suffer from
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the curse of dimensionality [2]. Even if a recent analysis shows that

stability of a particle filter may be obtained in O(Nd3) operations [4],

where N is the number of particles and d is the dimension of the state

space, it is still far too computationally expensive for large scale mod-

els where d is at least O(102) and each numerical function evaluation

may take several minutes.

Our focus here is therefore on the more practical sequential Monte

Carlo methods that are applied in many large scale real world prob-

lems. The most famous one being arguably the ensemble Kalman

filter (EnKF) in different variants [17]. Although EnKF is easy to im-

plement and do not suffer from curse of dimensionality in the same

way as other Monte Carlo methods, there is always an asymptotic

bias when applied to nonlinear problems [24]. This observation is of

course also true for the smoother version of EnKF (EnKS, [34]) that

assimilates all data at ones. Here we focus on parameter estimation,

hence the smoother is equivalent to an off-line batch updating algo-

rithm.

A new EnKS approach with multiple linear update steps has re-

cently been suggested [3,9,15]. We show how this iterative ensemble

smoother method, denoted ESMDA in the following, can be weight

corrected in the nonlinear case. The idea is similar to Gaussian par-

ticle flow [5], where a Gaussian distribution evolves in pseudo time

and takes into account partial information from the measurements

sequentially. The mean and covariance of this Gaussian flow are ob-

tained from a linearization of the initial state. The implementation

of the ESMDA avoids linearization of the model in the nonlinear case

which is desirable in large scale models where gradients are often
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hard to come by due to the frequent use of commercial software

and/or lack of an adjoint code. The proposed methodology can be de-

rived from annealed importance sampling [25]. Annealed Importance

sampling (AIS) is an iterative importance sampling algorithm where

the target distribution is tempered at each iteration. The method is a

special case of the sequential Monte Carlo samplers defined by [14].

More details will be provided in Section 2.1. We discuss robustness

of the proposed method and introduce a weight variance reduction

technique [33] for implementation in large scale models. Finally, we

extend this approach to Gaussian mixtures [8,20] in order to develop

an iterative Gaussian mixture method along the lines of [31]. A Gaus-

sian mixture smoother is a hybrid between importance sampling and

the EnKS. It consists of a linear Kalman type update of the parame-

ters and a weighting step where the weights are computed from an

approximate likelihood function. The proposed methods are demon-

strated on a canonical problem, simply to verify the theory presented,

and on a synthetic 2-dimensional petroleum reservoir model. The pa-

per is concluded with a summary section.

2. Bayesian inversion and annealed importance sampling

In the Bayesian framework we are concerned with posterior in-

ference of a random variable X ∈ Rd given some prior information,

usually defined via a prior probability density function, and some

random measurements Y ∈ Rq. X is typically either a time series X =
(X1, . . . , XT ) with prior information given by the joint probability den-

sity pX(x) = pX1,...,XT
(x1, . . . , xt) = px1

(x1)
∏T

t=2 pXt |Xt−1
(xt |xt−1) or a

vector of parameters with a prior probability density pX(x). In the rest

of the manuscript we omit the subscript and simply denote p( · ) to

be the probability density of its argument as long as there is no room

for confusion.

We assume that the measurements are linked with the variable X

through a likelihood function �(x)
def= p(y|x). The measurements are

typically modeled as a (nonlinear) function of X with additive random

noise. That is

Y = H(X) + ε, (2.1)

where H : Rd → Rq and the random variable ε is independent of X.

Posterior inference (mean, mode, probability regions etc) can all be

computed via the posterior probability density function

p(x|y) = p(x)�(x)C−1, (2.2)

where C = ∫
�(x)p(x)dx is the normalizing constant. Unless stated

otherwise, we assume in the following that ε in (2.1) is a zero mean

Gaussian random variable with a covariance matrix R. Note that Y is a

vector where the different entries may consist of measurements col-

lected at different time instances.

An annealing process [22] in the Bayesian framework typically

consists of tempering either the likelihood function (or the posterior)

by introducing a (discrete) pseudo time index j = 0, . . . , J and then

take advantage of the fact that one may rewrite the likelihood as

�(x) =
J∏

j=0

�(x)α j , (2.3)

with the constraints that
∑J

j=0
α j = 1 and for all j, 0 ≤ αj ≤ 1. The

idea of annealing in Monte Carlo sampling is to slowly change the

distribution of the samples from the prior to the posterior. These slow

transitions are typically less variance prone than methods that targets

the posterior directly from the prior. The name of course comes from

its physical analog of heating material slowly in order to increase a

material’s ductility.

In the ESMDA the measurement error covariance matrix R is in-

flated to α−1
j

R (note that each α−1
j

≥ 1) at the iteration j with the

same sum constraint on {α j}J
j=0

. In [15] linear algebra was used to

show the equivalence with the standard EnKS for linear models (note

that with our definition αj corresponds to α−1
j

in [15]). Similarly, the

update equations may be derived from (2.3). Hence the ESMDA can

be formulated as an annealed importance sampling algorithm [25] in

the Gauss-linear case. However, the method cannot be generalized to

the nonlinear case in this framework without either modifying the

ESMDA algorithm or modifying the annealed importance sampling

algorithm [14]. Furthermore, the algorithm can be formulated as a

population Monte Carlo [6] approach in the adaptive importance

sampling framework (see e.g. [7,18,26]). However, for complex pos-

terior distributions and high dimensional system, the annealing pro-

cess is usually superior [14] and thus remains the focus here. The

details of the extended algorithm are given in Section 2.1.

The annealing part of the annealed importance sampling algo-

rithm enters through a sequence of probability densities, defined by a

sequence of functions, { f j}J
j=1

. Here we use the following definitions

f j(x) = p(x)�(x)
β j , (2.4)

for a sequence 0 = β0 < β1 < · · · < βJ = 1, although other alterna-

tives for fj exist [25]. Note that fj(x) also depends on y through

�(x)β j = p(y|x)β j . Since we are not guaranteed that fj integrates to 1

for each j, a target density pj(x|y) can be defined by normalizing (2.4).

That is, for each j the target density is defined by

pj(x|y) = f j(x)∫
f j(x) dx

. (2.5)

The relation to (2.3) is given by β j = ∑ j

k=0
αk. Furthermore we notice

that p0(x|y) = p(x) is the prior and pJ(x|y) = p(x|y) is the posterior.

Instead of targeting one density, the annealing process targets multi-

ple densities sequentially in (pseudo) time.

In many applications of Bayesian inversion, it is usually impos-

sible to draw random samples directly from the target density. An

alternative method, at least for low dimensional systems, is to use im-

portance sampling. A standard importance sampling approach con-

sists of selecting an importance function (a density) q(x) which is

easy to sample from and with at least the same support as the tar-

get p(x|y) (that is q(x) > 0 whenever p(x|y) > 0). Then N i.i.d. samples

are drawn from q(x) and for any measurable function h(x), E[h(X)] =∫
h(x)p(x|y) dx can be estimated from the weighted sum

IN(h) =
N∑

i=1

h(Xi)w(Xi), (2.6)

where the importance weight w is defined by w(x) = p(x|y)/q(x).

The function h can be used to answer questions of interest, for ex-

ample if h(x) = x then IN(h) estimates the mean of the target distri-

bution and if h(x) = 1A(x) then IN(h) estimates the probability of X ∈
A for some measurable set A with respect to the target density. Also

note that since p(x|y) is known only up to a normalizing constant, the

importance weights have to be normalized. For complex target dis-

tributions, the naive estimator (2.6) is relatively variance prone re-

quiring a large sample size, N, to produce an accurate estimate. The

annealed importance sampling algorithm [25] tries to overcome this

by sequentially targeting pj(x|y), starting with the prior at j = 0 and

ending up with the original target at j = J. As the targets are slowly

changing from the prior towards the posterior this algorithm is typ-

ically more stable (smaller variance) than standard importance sam-

pling methods [14]. Since this is also a sequential Monte Carlo method

[13] in pseudo time, a re-sampling step may be performed between

each time step if the weights are varying too much [23]. Large varia-

tion of the weights is linked to large variance of the estimator in (2.6).

In principle, at pseudo time j, one could sample from an importance

density qj(xj) and evaluate the weights {w(Xi
j
) = p j(Xi

j
|y)/q j(Xi

j
)}N

i=1
.

However, since the idea is to slowly move towards the target, qj(xj)

has to depend on x j−1, otherwise the information from p j−1(x|y) is

lost. Hence it is necessary to specify a transition kernel (a conditional
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