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a b s t r a c t

In this article we propose a stochastic bed load transport formulation within the framework of the frictional

shallow-water equations in which the sediment transport rate results from the difference between the en-

trainment and deposition of particles. First we show that the Saint-Venant-Exner equations are linearly un-

stable in most cases for a uniform base flow down an inclined erodible bed for Shields numbers in excess

of the threshold for incipient sediment motion allowing us to compute noise-induced pattern formation for

Froude numbers below 2. The wavelength of the bed forms are selected naturally due to the absolute char-

acter of the bed instability and the existence of a maximum growth rate at a finite wavelength when the

particle diffusivity coefficient and the water eddy viscosity are present as for Turing-like instability. A nu-

merical method is subsequently developed to analyze the performance of the model and theoretical results

through three examples: the simulation of the fluctuations of the particle concentration using a stochas-

tic Langevin equation, the deterministic simulation of anti-dunes formation over an erodible slope in full

sediment-mobility conditions, and the computation of noise-induced pattern formation in hybrid stochastic-

deterministic flows down a periodic flume. The full non-linear numerical simulations are in excellent agree-

ment with the theoretical solutions. We conclude highlighting that the proposed depth-averaged formulation

explains the developments of upstream migrating anti-dunes in straight flumes since the seminar experi-

ments by Gilbert (1914).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the earliest developments on bed load transport equa-

tions, the most common approach taken in computational river dy-

namics for routing sediment has involved the Exner equation and

bed load transport equations, i.e. algebraic expressions relating the

mean sediment flux q̄s to the water conditions (e.g., the dimension-

less Shields number Sh). In classical theories of sediment transport,

the water flow is mostly described as a nearly uniform flow un-

der equilibrium conditions [46,75,80]. The resulting governing equa-

tions are the one- or two-dimensional Saint-Venant equations or,

more recently, the three-dimensional Navier–Stokes equations [78].

In his recent paper reviewing the last decade of research on river

bed stability, Colombini [27] noted that one of the current chal-

lenges is to substitute the classic Exner equation with a probabilistic
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version. Stochastic partial differential equations are an emerging field

not yet standard in sedimentation engineering but are becoming in-

creasingly utilized [69,73]. In this article, we supplement the one-

dimensional Saint-Venant equations with the stochastic form of the

Exner equation recently proposed by Ancey and Heyman [5], we

study for the first time the linear stability properties of the system

and we verify the theoretical results by means of full non-linear nu-

merical simulations of noise-induced pattern formation using a finite

volume method for hybrid stochastic-deterministic flows.

A common practice in sedimentation engineering is to distinguish

between flows with intense and moderate sediment transport rates

[e.g. 54]. The partial mobility regime is encountered when Sh < 2 Shcr

[42], with Shcr the critical Shields number for the onset of sediment

motion. It corresponds to situations in which part of the bed sedi-

ment is mobilized by the water stream and so, the resulting sediment

transport rate is low to moderate. The full mobility regime describes

situations in which all the bed surface takes an active part in the

sediment transport process, often under full bank conditions. Clas-

sical bed load transport equations such as the Meyer-Peter & Mueller,

Ashida & Michiue and Fernandez Luque & van Beek formulas have
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been applied to both regimes. Applying these deterministic equations

to the partial mobility regime leads to excessive errors and uncertain-

ties in the prediction of the transported sediment volume, especially

on long time scales (e.g., weeks or more) [68]. Applied to the full mo-

bility regime, these equations usually provide the correct trend, but

even in this favorable case, they cannot predict the bed load flux with

an error lower than 200% [37]. We think that the improvement of

bed load transport models calls for a more refined framework rather

than a refinement of algebraic sediment transport equations (e.g., by

increasing the number of variables of the problem). A clear impedi-

ment to greater accuracy has so far been the occurrence of wide fluc-

tuations of the sediment transport rate and the development of bed

forms. Both processes are intertwined and it is difficult to evaluate

one without studying the other. In this paper, we use the stochas-

tic framework for bed load transport proposed by Ancey et al. [4].

Within this framework, the sediment transport rate is defined as the

difference between the entrainment and deposition rates and so, it

can vary locally significantly over time depending on the flow condi-

tions, bed slope, and transport of particles in the close neighborhood.

This framework is well suited to the partial mobility regime as it does

not directly relate the water discharge and particle flux, but defines

the latter as a random variable. We will show that it is also consis-

tent with the existing bed load transport equations for the full mobile

regime: indeed, we have observed that the average sediment trans-

port rate exhibits the same exponential dependence on the Shields

number as classical formulas and other erosion-deposition models

for Sh � Shcr.

Even in the simplest case of the one-dimensional Saint-Venant

equations, substantial numerical difficulties arise when coupling the

classical Exner equation with algebraic bed load discharge equa-

tions. For instance, two of the three system eigenvalues vanish [60],

which requires a careful treatment of critical conditions and the ab-

sence of sediment motion. Schemes used for strongly coupled or

decoupled numerical schemes are also the object of intense de-

bates [29,45,66,72]. Interestingly here, we will see that the erosion-

deposition formulation for bed load transport allows us to readily

extend previous finite volume methods for frictional shallow wa-

ter equations similar to what has been done for computing the sus-

pended load in dilute flows, see Bohorquez and Fernández-Feria [14].

A simple strategy allows us to readily incorporate the stochastic equa-

tions for bed load transport into the numerical codes previously de-

veloped for frictional shallow-water flows on fixed beds [13,14].

The paper is organized as follows: the problem under investiga-

tion is summarized in Section 2. The linear stability properties of the

mean balance equations are explored in Section 3. Next, Section 4

is devoted to the description of the hybrid finite-differences/finite-

volume method and the numerical simulations. Accuracy and per-

formance are evaluated by comparing numerical simulations with

available theoretical solutions [3,4,43]. We also study the evolution of

infinitesimal disturbances on a uniform base flow down an inclined

plane, which leads to pattern formation and anti-dunes. Following

Bohorquez [13], new analytical solutions are built and compared with

numerical simulations. Conclusions are finally presented in Section 5.

2. Physical problem under investigation

2.1. Saint-Venant Exner equations: entrainment-deposition model

For one-space variable problems, the simplest morphodynamic

model comprises the shallow-water (Saint-Venant) equations for the

conservation of mass and momentum of the water phase and the

Exner equation for the continuity equation of the bed [37]:

∂h

∂t
+ ∂hv̄

∂x
= 0, (1)

∂hv̄
∂t
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= D − E ∼= −∂ q̄s

∂x
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in which h(x, t) = ys − yb denotes the flow depth, yb(x, t) and ys(x, t)

are the positions of the bed and free surfaces, v̄ is the depth-averaged

velocity, x is the downstream position, t is time, ϱ is the water den-

sity, τ b is the bottom shear stress, ζ b is the bed porosity, q̄s is the av-

erage bed load transport rate (see (7) below), and D and E represent

the deposition and entrainment rates, respectively. The bed slope is

defined as tan θ = −∂xyb. In most models based on (1)–(3), the gov-

erning equations are closed by empirical relationships for the flow

resistance τ b and sediment transport rate q̄s, both being functions of

the flow variables v̄ and h, and additional parameters (e.g., bed rough-

ness and slope). Physically, this means that the sediment phase is the

slave of the water phase and this dependence is justified by the mo-

mentum transfers from the water to the sediment phases [8,9]. The

extra term ∂x(νh∂xv̄) in the momentum balance equation (2) repre-

sents a simple depth-averaged Reynolds stress [64].

2.2. Stochastic approach

Here we take a different approach to sediment transport. Follow-

ing Einstein [33], we consider that sediment transport results from

the imbalance between erosion and entrainment. Originally, Einstein

[33] developed a Lagrangian viewpoint and expressed the erosion

and deposition rates from statistical features of particle trajectories.

More recently, Ancey et al. [4] used the framework of jump Markov

processes for describing the random time variation in the number

of moving particles n in a given volume of control. This Eulerian ap-

proach led them to express the entrainment and deposition rates as a

function of the mean particle activity 〈γ 〉 (i.e., the volume of moving

particles n per unit bed area): E = λ + μ〈γ 〉 and D = σ 〈γ 〉. The angu-

lar brackets 〈γ 〉 refer to the ensemble average of the random variable

γ . The parameters λ, μ and σ were called the particle entrainment,

the collective entrainment, and the deposition coefficients. Note the

asymmetry in the expressions of the entrainment and deposition

rates, which result from the differences in the physical processes in-

volved.

As n and γ are random variables, they are characterized by their

probability distribution function Pn(x, t) and Pγ (x, t). Ancey et al. [4]

used the theory of birth-death Markov processes for deriving the gov-

erning equation of the number of moving particles n, more exactly its

probability distribution. To make the problem more tractable, Ancey

and Heyman [5] worked not with the distribution Pn(x, t), but with

the Poisson representation

Pn(x, t) =
∫
R+

Pa(x, t)
e−aan

n!
da,

where a is called the Poisson rate and Pa is its probability distribution

function. The Poisson representation can be thought of as a Laplace

transform for probabilities distributions, which makes it possible to

work with continuous random variables (here a) instead of discrete

random variable (here n). Indeed, like in continuum mechanics, it is

easier to work with local continuous variables than with global and

discrete variables. Ancey and Heyman [5] introduced the particle ac-

tivity as the limit of the volume occupied by the particles when the

length �x of the control volume tends to 0

γ = lim
�x→0

nVp

B�x
,

where Vp = πd3/6 is the typical particle volume, B is the width of the

control volume, d is the mean particle diameter. Similarly, they took
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