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a b s t r a c t

The lack of hydrogeological data and knowledge often results in different propositions (or alternatives) to

represent uncertain model components and creates many candidate groundwater models using the same

data. Uncertainty of groundwater head prediction may become unnecessarily high. This study introduces an

experimental design to identify propositions in each uncertain model component and decrease the predic-

tion uncertainty by reducing conceptual model uncertainty. A discrimination criterion is developed based on

posterior model probability that directly uses data to evaluate model importance. Bayesian model averaging

(BMA) is used to predict future observation data. The experimental design aims to find the optimal number

and location of future observations and the number of sampling rounds such that the desired discrimination

criterion is met. Hierarchical Bayesian model averaging (HBMA) is adopted to assess if highly probable propo-

sitions can be identified and the conceptual model uncertainty can be reduced by the experimental design.

The experimental design is implemented to a groundwater study in the Baton Rouge area, Louisiana. We de-

sign a new groundwater head observation network based on existing USGS observation wells. The sources

of uncertainty that create multiple groundwater models are geological architecture, boundary condition, and

fault permeability architecture. All possible design solutions are enumerated using a multi-core supercom-

puter. Several design solutions are found to achieve an 80%-identifiable groundwater model in 5 years by

using six or more existing USGS wells. The HBMA result shows that each highly probable proposition can

be identified for each uncertain model component once the discrimination criterion is achieved. The vari-

ances of groundwater head predictions are significantly decreased by reducing posterior model probabilities

of unimportant propositions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of a reliable groundwater model for future applica-

tions is the ultimate goal of model development. This goal, however,

remains challenging due to high uncertainty in groundwater systems.

Over the past several decades, many studies have focused on un-

derstanding, quantifying, and reducing head prediction uncertainty

arising from model parameter uncertainty given a conceptual model

[1,2]. Considering only one model may lead to statistical bias and un-

derestimation of uncertainty because groundwater systems are often

complex and have multiple interpretations [3–5].

In recent years, conceptual model uncertainty has received much

attention in groundwater applications (e.g., [6–14]). Many studies

have shown that contribution of conceptual model uncertainty to

predictive uncertainty is significantly larger than that of model pa-

rameter uncertainty [3–5,7–10,14–17]. This motivates the research to
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consider multi-model methods that seek to obtain multi-model en-

semble predictions and analyze uncertainty from a set of candidate

groundwater models.

Bayesian model averaging (BMA) [18–21] is often employed to

conduct multi-model prediction studies because BMA employs prob-

abilistic techniques to derive consensus predictions from a set of

candidate models based on their corresponding posterior model

probabilities. Averaged predictions from BMA are less biased than

predictions obtained from individual models [22–24]. Moreover, BMA

is able to study uncertainty propagation from model parameter un-

certainty and model structure uncertainty to model prediction uncer-

tainty, thereby distinguishing prediction uncertainty arising from in-

dividual models, between models, and between methods [13,25,26].

The lack of hydrogeological data and knowledge often results in

different propositions (or alternatives) to represent uncertain model

components and creates many candidate groundwater models using

the same data. For example, geological architecture can be one un-

certain model component in groundwater modeling. Many hydros-

tratigraphy modeling techniques may be proposed to construct dif-

ferent geological architectures (propositions) potentially leading to
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an overwhelming number of models with non-dominant posterior

model probabilities. Conducting prediction and uncertainty analysis

using a great deal of computationally intensive groundwater models

can become intractable. By incorporating many conceptual models,

prediction results using BMA can become useless when the predic-

tion uncertainty is very high. This concern highlights the importance

of conducting an experimental design to discriminate groundwater

model propositions, identify highly probable models, and in turn,

reduce conceptual model uncertainty (model choice uncertainty) in

prediction.

In the field of groundwater hydrology, many studies have con-

ducted experimental designs to improve parameter estimation (e.g.,

[13,27–32]), reduce model prediction uncertainty (e.g., [33–36]) and

minimize decision errors in hypothesis tests [37]. Some studies have

used experimental designs to discriminate candidate models and

identify the “true” model [38–42]. Knopman and Voss [39] investi-

gated the theoretical discrimination power of designs and suggested

sample locations where predictions of candidate models were the

most different. They proved the efficiency of the method in a sam-

pling design for a solute transport study at Cape Cod, Massachusetts

in a subsequent paper [41]. Usunoff et al. [38] hypothesized that the

“true” model is close to one of the candidate models and no admis-

sible parameter sets of remaining candidate models could produce

similar predictions. They used an experimental design to discrimi-

nate models based on the distance of model predictions. Yakirevich et

al. [42] recently applied the Kulback-Leibler information to discrimi-

nate flow and transport models.

Significant efforts have been invested in the development of

different discrimination criteria for experimental designs in differ-

ent fields [42–54], but only a few criteria have been applied to

groundwater modeling, e.g., the differences between model outputs

[38,39,41,55] and the Kulback-Leibler information [42].

Model discrimination criteria should serve not only for model dis-

crimination, but also for model identification. As discussed in Box and

Hill [43], the ultimate goal of maximizing information from the sys-

tem should aim to make the posterior probability of one model to

be 1 and others to be zero. In line with Box and Hill, this study in-

troduces a new experimental design to identify the most probable

model under the BMA framework. A discrimination criterion is de-

veloped based on maximizing the maximum posterior model prob-

ability across all candidate models such that a unique and highly

probable groundwater model can be identified. Posterior model prob-

ability is a straightforward quantitative indicator for model discrimi-

nation and is suitable for the experimental design since it represents

model importance based on data evidence. The experimental design

is implemented to a groundwater study at Baton Rouge, southeastern

Louisiana. The purpose of the experimental design in this case study

is to find the optimal number and location of groundwater observa-

tion wells and the number of sampling rounds such that a groundwa-

ter model meets the desired value of the discrimination criterion.

2. Discrimination criterion

Unlike prior studies that use differences between model outputs

[38,39,41,55] or Kulback-Leibler information [42] to set up a dis-

crimination criterion, this study uses the posterior model proba-

bility to discriminate one model from other candidate models. Let

M = {Mp; p = 1, 2, . . . , P} be a set of P candidate models developed by

propositions from different sources of model structure uncertainty.

The posterior model probability for a model Mp is Pr(Mp|�obs), where

�obs is existing observation data (e.g., groundwater heads, concen-

tration, fluxes, etc. in aquifers). From Bayes’ theorem, the sum of the

posterior model probabilities is unity, i.e.,
∑P

p=1 Pr(Mp|�obs) = 1. A

model is said to be γ -identifiable from the rest of the candidate mod-

els if its posterior model probability is superior to others and is over

a probability threshold, γ . The probability threshold, γ , should be

much larger than 50% (e.g., 80%) to ensure a unique and highly prob-

able model. To find the maximum posterior model probability and

check if the γ -identifiable model can be identified, we define the dis-

crimination criterion as:

max{Pr(Mp|�obs
), p = 1, 2, · · · , P} ≥ γ , (1)

where the γ -identifiable model is the best model among the candi-

date models in terms of the highest posterior model probability.

3. Experimental design using BMA prediction

If none of the candidate models meets the probability threshold,

the existing observation data �obs is insufficient to identify a highly

probable model. An experimental design is conducted to seek poten-

tial locations and time to collect future observation data through an

observation network such that the γ -identifiable model can be iden-

tified. The experimental design is to maximize the maximum poste-

rior model probability across all the candidate models and is defined

as follows:

D∗ = arg
D

[
max max

{
Pr

(
Mp|�obs

,�new
D

)
, p = 1, 2, · · · , P

}
≥ γ

]
,

(2)

where D∗ is the optimal design to determine potential locations and

time of observations that produces the highest posterior model prob-

ability; �new
D is the future observation data at potential observation

locations and time using a design D; � = {�obs
,�new

D } are the total

data. The optimal design should have the maximum posterior model

probability Pr(Mp|�obs
,�new

D∗ ) ≥ γ .

Since we do not know the future observation data �new
D , these

data may be predicted deterministically or stochastically. It is un-

derstood that uncertainties in the future observation data may affect

posterior model probability calculations, thereby affecting the exper-

imental design results; however, this is not investigated in the current

study. In the following sampling approach, we take the deterministic

approach and propose BMA mean predictions as the future observa-

tion data in the experimental design because the BMA mean predic-

tion presents unbiased estimation.

3.1. Time-sequential sampling approach

Future observation data at different locations and times provide

different information about model predictions and its ability to dis-

criminate models. A time-sequential sampling (TSS) approach is used

to sequentially collect spatiotemporal future observation data and

update posterior model probabilities over time. To best predict fu-

ture observation data, �new, using all candidate models, BMA [18–21]

is adopted to obtain mean predictions. Given a number of observa-

tion locations, the experimental design with the TSS approach is as

follows:

Step 1: For the first round of data collection at time tk, the future

observation data presented by the BMA mean predictions are

E

[
�new

D (t1)|�obs
]

=
P∑

p=1

E

[
�new

D (t1)|�obs
, Mp

]
Pr(Mp|�obs

), (3)

where E[�new
D (t1)|�obs

, Mp] are the means of the future observation

data predicted by model p at time t1 given the existing observation

data �obs and a design D, E[�new
D (t1)|�obs

] are the BMA means at

time t1, and Pr(Mp|�obs) is the posterior model probability of Mp cal-

culated using the existing observation data. This study adopts the

large sample assumption of Draper [18], that E[�new
D (t1)|�obs

, Mp]

is approximated by E[�new
D (t1)|�obs

, β̂p, Mp], where β̂p is the max-

imum likelihood estimate of model parameters βp of model Mp. The

total data �1 = {�obs
, E[�new

D (t1)|�obs
]} are used to update the pos-

terior model probabilities Pr(Mp|�1), which will be explained in the
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