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a b s t r a c t

A three-dimensional (3-D) model has been developed to simulate shallow water flows in large water bod-

ies, such as coastal and estuarine waters. The eddy viscosity is determined using a newly modified mixing

length model that uses different mixing length functions for the horizontal and vertical shear strain rates.

The 3-D shallow water flow equations with the hydrostatic pressure assumption are solved using an implicit

finite-volume method based on a quadtree (telescoping) rectangular mesh on the horizontal plane and the

sigma coordinate in the vertical direction. The quadtree technique can locally refine the mesh around struc-

tures or in high-gradient regions by splitting a coarse cell into four child cells. The grid nodes are numbered

with a one-dimensional index system that has unstructured grid feature for better grid flexibility. All the pri-

mary variables are arranged in a non-staggered grid system. Fluxes at cell faces are determined using a Rhie

and Chow-type momentum interpolation, to avoid the possible spurious checkerboard oscillations caused by

linear interpolation. Each of the discretized governing equations is solved iteratively using the flexible GM-

RES method with ILUT preconditioning, and coupling of water level and velocity among these equations is

achieved by using the SIMPLEC algorithm with under-relaxation. The model has been tested in four cases, in-

cluding steady flow near a spur-dyke, tidal flows in San Francisco Bay and Gironde Estuary, and wind-induced

current in a flume. The calculated water levels and velocities are in good agreement with the measured val-

ues.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional flow features significantly affect the mass

transport and morphology in surface water systems. Even though

many one-dimensional (1-D) and depth-averaged two-dimensional

(2-D) models have been widely used with certain success, realistic

simulation of these complex features preferably needs a three-

dimensional (3-D) model, which can be based on the full 3-D

Navier–Stokes equations or the 3-D shallow water equations that are

simplified from the Navier–Stokes equations by assuming hydrostatic

pressure or gradually-varied flow. Solving the 3-D Navier–Stokes

equations to compute flows in large water bodies such as coastal

and estuarine waters is still very time-consuming, even with the

ever-increasing capacity of computing technologies. The cheaper

approach is using the 3-D shallow water flow equations in cases

where the hydrostatic pressure assumption is approximately valid.

Efficiently solving the 3-D shallow water equations has been a

great challenge. Several early 3-D shallow water flow models, such

as CH3D (Curvilinear-grid Hydrodynamics 3D model) originally de-

veloped by Sheng [29] and POM (Princeton Ocean Model) by Blum-
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berg and Mellor [2], split the governing equations into internal and

external modes. The internal mode handles the slower vertical baro-

clinic flow structures, while the external mode computes the depth-

integrated quantities that are governed by the fast barotropic dy-

namics. Different time steps can be used in the internal and external

modes accordingly, but there may be a tendency of velocity mismatch

between internal and external modes that needs to be corrected dur-

ing the time marching. This problem has been addressed in latter

models FVCOM [4] and ROMS (Regional Ocean Modeling System; [7]),

which also adopt the mode-splitting approach. Leendertse [11] devel-

oped an alternating implicit method to solve the continuity and mo-

mentum equations, which later evolves to the Delft3D model system

[12]. Casulli and Cheng [3] proposed a semi-implicit projection-type

finite-difference method to solve the 3-D shallow water flow equa-

tions without splitting the internal and external modes. This semi-

implicit approach has been found to be efficient and adopted by sev-

eral models. In addition, the 3-D models developed by Lin and Fal-

coner [14] and Shanhar et al. [28] divide the flow depth into several

layers, integrate the 3-D shallow water flow equations in each layer,

and solve the layer-integrated continuity and momentum equations

using 2-D solution methods.

The 3-D shallow water equations inherit the weakness of the

Navier–Stokes equations, in which the velocity is linked to the water
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level (pressure) gradient by the momentum equations but the con-

tinuity equation is just an additional constraint on the velocity field

without directly linking to the water level. Because of such a weak

linkage, coupling of velocity and water level is an important issue

in solving the 3-D shallow water equations. The key aspect is the

arrangement of the grid system and primitive variables. Staggered

grid arrangement, often used with MAC (Marker and Cell) method

[8], projection method [5], and SIMPLE (Semi-Implicit Method for

Pressure-Linked Equations) algorithm family [17,18] for the Navier–

Stokes equations, can eliminate potential oscillations. The majority

of the aforementioned existing 3-D shallow water models thus use

staggered grids (e.g., [3,4,11]). However, the staggered grid is some-

how inconvenient in 3-D models with non-rectilinear mesh systems

because it uses different grids and control volumes for the veloc-

ity components and water level (pressure). The advantage of non-

staggered (collocated) grid arrangement is its simplicity in arrange-

ment of primitive variables in a single grid, but it was criticized be-

cause potential checkerboard oscillations may appear when the lin-

ear interpolation method is used to evaluate the interfacial fluxes

[17]. Such oscillations can be eliminated by using the momentum in-

terpolation method proposed by Rhie and Chow [23]. Therefore, the

non-staggered grid has been used more and more in 3-D CFD models,

especially in curvilinear or other complicated meshes [6,19,34].

To handle the complex computational domain, grid flexibility is

often another issue in numerical modeling of surface water flows.

A simple rectangular mesh is difficult to conform to the irregular

boundaries and locally refine the mesh around the structures or

high-gradient regions. A structured quadrilateral (curvilinear) grid

can serve this purpose by stretching or shrinking the mesh sizes,

but it is less flexible for a very large, complex domain than the un-

structured triangular mesh (e.g., [4]). On the other hand, the rectan-

gular or quadrilateral mesh is more convenient than the triangular

mesh for establishing high-order (e.g., second and third) schemes or

for discretizing second or higher order spatial derivatives. Therefore,

quadtree (telescoping) rectangular or quadrilateral mesh has been re-

cently used for local refinement of computational mesh [6,16,19,35].

On the quadtree mesh, a coarse cell is split into four child cells and

thus the mesh can be easily refined locally.

Therefore, a 3-D shallow water flow model is developed in this

study using the recently advanced technologies mentioned above.

The model uses the quadtree rectangular mesh on the horizontal

plane and the sigma coordinate in the vertical direction. The gov-

erning equations are solved using the finite volume method based

on non-staggered grid. The SIMPLEC algorithm with under-relaxation

and the Rhie and Chow’s momentum interpolation method are used

to handle the coupling of velocity and water level. Mathematical for-

mulations, numerical solution methods and validations of the devel-

oped model are described below.

2. Model formulations

2.1. 3-D shallow water flow equations

The 3-D shallow water equations in the Cartesian coordinate sys-

tem are written as
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where t is time; x and y are the horizontal coordinates; z is the verti-

cal coordinate pointing upward above the reference datum (e.g., the

seal level or still water level); u, v, and w are the velocities in x-, y-,

and z-directions; η is the water surface elevation; g is the gravita-

tional acceleration; νtH and νtV are the horizontal and vertical eddy

viscosities, respectively; and fc is the Coriolis coefficient.

Note that because the main focus here is the numerical solution

algorithm, Eqs. (1)–(3) consider only a constant water density. In gen-

eral, the water density in coastal and estuarine waters varies in space

and time due to salinity, temperature or sediment transport. These

features are not considered here for simplicity.

2.2. Eddy viscosity

The eddy viscosity can be evaluated using many turbulent mod-

els, from zero- to second-order [24]. Because high-order turbulence

models usually require fine meshes and are expensive to use for

flows in large domains, only zero-order turbulence models, including

the parabolic eddy viscosity model, subgrid model [30] and mixing

length model, have been implemented here. Among these options,

the mixing length model is found to be adequate for a relatively wide

range of problems. The mixing length model was first proposed by

Prandtl [21] for two-dimensional boundary layer flows. It is modified

as follows for the eddy viscosity, νt, of the 3-D shallow water flow:
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√(
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(
l2
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∣∣S̄H

∣∣)2
(4)

where lmV is the vertical mixing length, lmH is the hori-

zontal mixing length, |S̄|V = [(∂u/∂z)2 + (∂v/∂z)2
]1/2, and |S̄|H =

[2(∂u/∂x)2 + 2(∂v/∂y)2 + (∂u/∂y + ∂v/∂x)2] 1/2. Eq. (4) is a combi-

nation of the horizontal and vertical mixing length models and ig-

nores the contribution of vertical velocity that is assumed much

smaller than the horizontal velocities in the case of shallow water

flow. The vertical and horizontal mixing lengths are determined as

lmV = κz′√1 − z′/h (5)

lmH = κ min (l, cmh) (6)

where z’ is the vertical coordinate above the bed, l is the horizontal

distance to the nearest solid wall, h is the total flow depth, к is the von

Karman constant, and cm is a coefficient which can be calibrated.

Eq. (5) is the mixing length for vertical two-dimensional open-

channel flow proposed by Саткевич [37]. Eq. (6) was used by Wu [34]

in a depth-averaged 2-D flow model. Both are modified from Prandtl’s

mixing length lm = κz′ of boundary layer flows. Eq. (5) can be applied

in the entire depth of open-channel flow, whereas the mixing length

of Prandtl is only for the log-law layer near wall boundary. Eq. (6)

considers the constraint of the horizontal eddy scale by the local flow

depth.

Eq. (4) is used to determine the horizontal and vertical eddy vis-

cosities, νtH and νtV. Different values of cm in Eq. (6) may be used for

νtH and νtV, to consider different length scales of turbulence struc-

tures in the horizontal and vertical directions. Wu [34] reports cm be-

tween 0.4 and 1.2 for a depth-averaged 2-D model, which can be a

reference for cm in the horizontal eddy viscosity. In the present study,

an isotopic value of 0.3 for cm is found to work well in the four test

cases described later. This value is slightly out of the range recom-

mended by Wu [34], perhaps due to different calculations of shear

strain rates in 2-D and 3-D models.
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