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a b s t r a c t

Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time

flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used

to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing

observations, within water models. Current hydrologic and hydraulic research works consider assimilation of

observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile

communication devices are becoming also increasingly available. The main goal and innovation of this study

is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space

and intermittent in time in the context of two different semi-distributed hydrological model structures. The

developed method is applied to the Brue basin, where the dynamic observations are imitated by the syn-

thetic observations of discharge. The results of this study show how model structures and sensors locations

affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation

of such uncertain observations from dynamic sensors can provide model improvements similar to those of

streamflow observations coming from a non-optimal network of static physical sensors. This can be a poten-

tial application of recent efforts to build citizen observatories of water, which can make the citizens an active

part in information capturing, evaluation and communication, helping simultaneously to improvement of

model-based flood forecasting.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Despite continuous construction of flood retaining structures such

as levees or reservoirs, the floods impact in many countries is still an

acute problem [1,2]. For this reason, the demands for flood forecast-

ing systems, which allow decision makers to take the most effective

decisions based on the forecasted water levels in rivers, have signifi-

cantly increased [3].

These systems are supposed to provide forecasts timely, suffi-

ciently accurately and preferably with the estimates of the associated

uncertainty [4,5]. Such uncertainty is due to errors in observations,

input, model parameters and model structure [6,7].

One technique allowing for reducing predictive uncertainty is a

model updating procedure, in which model input, states, parameters

or outputs are updated as a response to real time observations com-

ing into the model [8,9].
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There are two related groups of updating methods, namely error

correction methods (e.g. [10,11]) and data assimilation (DA) [5,12–16].

In this paper we are dealing with the DA methods.

DA is an important and widely used technique, applied in hydrol-

ogy to efficiently integrate observations into hydrological and hydro-

dynamic models to obtain improved model predictions and to re-

duce modeling uncertainty. One of the first filtering technique used

to assimilate observed noisy data into models is the Kalman filter

(KF) [17]. Different variants of the Kalman filter, such as the ex-

tended Kalman filter (EKF) [18], unscented Kalman filter and ensem-

ble Kalman filter (EnKF) [19,20], have been proposed and used in hy-

drology improving the main limitations of the KF [21]. Recently, Liu

et al. [21] provided a detailed review of the status, progresses, chal-

lenges and opportunities in advancing DA, stressing an increasing

need for implementing reliable data assimilation methods in oper-

ational forecasting.

Traditionally, monitoring networks based on in-situ observations

and, recently, remote sensing observations, are used to assimilate im-

portant hydrological variables as soil moisture [22–24], streamflow

[25,26], latent heat flux [27] or water level from remote sensing [28],

into water system models.
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However, over the last couple of decades the technological im-

provements provided a growing availability of real-time observations

coming from heterogeneous network of sensors [29]. In particular,

current interest is towards the dynamic sensors that change their lo-

cation at random moments and that have variable space and tempo-

ral coverage. A drawback of using measurements from dynamic sen-

sors is related to the intrinsic variable accuracy, due to the lack of

confidence in the data, and the variable life-span of each individual

sensor with the consequent intermittent nature of the observations.

In fact, the information coming from a specific sensor might be sent

just once, occasionally, or maybe consecutively but not at equidis-

tant time moments. Solomatine [30] presented a research plan to-

wards adaptive modeling in heterogeneous time-varying (dynamic)

data environments under uncertainty (AMODEU). These ideas are

currently being developed in the EU-FP7 WeSenseIt project (2012–

2016).

In the last years, a number of attempts to consider distributed

observations in hydrological and hydrodynamic models have been

made. The following most significant achievements can be men-

tioned. Clark et al. [31] assessed the impact of using streamflow data

(with records equidistant in time) from spatially distributed gauges

on flood forecasting. The authors proposed to transform streamflow

into log space before computing the covariance matrix in order to

improve the standard implementation of the EnKF. They also stressed

the importance of considering the time lags between model states

and streamflow. Xie and Zhang [32] investigated the performance of

a distributed model (SWAT) by means of EnKF to assimilate differ-

ent hydrological variables and update both model states and parame-

ters. The assimilation of synthetic observations of streamflow at 10

stations was performed at every time step. The authors found out

that the assimilation of runoff observations can significantly update

the model states and parameters. A similar study was carried out by

Chen et al. [33], who assimilated streamflow observations in a semi-

distributed model using EnKF. A more detailed study related with as-

similation of distributed observations was carried out by Rakovec et

al. [34], who used the distributed streamflow observations to update

the state of a distributed model built on the PCRaster platform [35].

Different sets of sensors locations along the main river channel and

three updating filtering frequencies were used to compare the results

of experiments with synthetic and real-life data. The results pointed

out that assimilation of streamflow at an interior point can improve

the model performance in terms of Root Mean Squared Error (RMSE).

A similar study is presented by Lee et al. [36], in which different fixed

spatiotemporal adjustment scales were used to update the states of

a lumped, semi-distributed and distributed hydrological model using

a variational assimilation method. It was found out that assimilation

performances were more sensitive to the spatial distribution of sen-

sors rather than to the updating frequency. McMillan et al. [37] ap-

plied a Recursive Ensemble Kalman filter (REnKF) in operational flood

forecasting in New Zealand in order to overcome the problem of the

time lag between upstream and downstream catchments in the as-

similation process. They found a significant improvement in the flood

prediction when using REnKF, rather than EnKF, in case of streamflow

assimilation. It should be noted that the mentioned applications nor-

mally deal with stable, regular and homogeneous streams of data (e.g.

rainfall, water level, discharge) to be assimilated.

In recent years there is also a growing interest in the assimilation

of distributed values of water level from remote sensing in flood-

forecasting systems (e.g., [28,38]). A detailed review of assimilating

this type of data is presented by Schumann et al. [39].

To the best of our knowledge, however, none of the previous flood-

related studies deal with the specific of the dynamic sensor networks

and citizen observatories: they consider neither the variable accuracy

(uncertainty) of sensors within the basin dynamic at each time step,

nor the intermittent nature of such observations. However, in oceanic

and meteorological modelling, assimilation of distributed intermit-

tent observations is quite standard. Due to the irregular sampling

times of oceanographic observations, most of the ocean data assim-

ilation (ODA) systems use continuous approaches, as 3D-Var or 4D-

Var methods, in order to assimilate these intermittent observations

at their corresponding times. Huang et al. [40] proposed an improved

continuous data assimilation scheme in which an incremental analy-

sis update strategy is combined with a continuous ODA model. In case

of observations randomly distributed in time and space, MacPherson

[41] compared the repeated insertion (RI) method with an alterna-

tive intermittent analysis-forecast cycle (AF). Sinopoli et al. [42] pro-

posed a robust Kalman filtering formulation able to model the arrival

of observations as a random process. In addition, Cipra and Romera

[43] developed a discrete Kalman Filter which allows the assimila-

tion of incomplete date series. Despite the approaches previously de-

scribed, in this study we decided to use a more straightforward and

pragmatic method, often used in real-time early warning systems,

similar to the approach proposed by Cipra and Romera [43] in or-

der to assimilate the intermittent observations into the hydrological

model.

The main innovation of this study consists of assimilating dis-

tributed uncertain, dynamic and intermittent synthetic observations

of discharge to improve the results of hydrological models. The fi-

nal goal is to demonstrate how hydrological models can be improved

when taking into account dynamic and intermittent data coming,

for example, from citizens participating in information capture along

with (or instead of) using the traditional gauging stations.

At the time of finalizing this paper we did not have the real data

from the sensors with the dynamic behavior, so they were simulated

by adopting a number of realistic scenarios of discharge observations,

with variable uncertainty in time and space.

The paper is organized as follows. First we describe the study

area and the hydrological models. Then, the application of the stan-

dard Ensemble Kalman Filter used to assimilate the streamflow ob-

servations in each sub-basin is presented. Next, the set-up of the

various assimilation experiments, considering various scenarios of

sensors locations and intermittency, is described. Finally, the re-

sults of the assimilation experiment and the main conclusions are

presented.

2. Site location and data

2.1. Study area

We consider the well-known and well-gauged Brue catchment, lo-

cated in Somerset, South West of England, with predominantly ru-

ral use and modest slope [44]. The drainage area of the catchment is

about 135 km2, with time response of about 10–12 h at the basin out-

let, Lovington. Hourly precipitation data are available at 49 automatic

rain stations (Fig. 1); average annual rainfall of 867 mm is measured

in the period between 1961 and 1990.

Discharge is measured at the basin outlet by one station at a

15 min time step resolution, having an average value of 1.92 m3/s.

For both precipitation and discharge data, a 3-years complete data

set, between 1994 and 1996, is available. Discharge observations used

come from rating curves that are typically not very accurate [45].

However, in order to evaluate model performances, observed values

of discharge at the basin outlet are assumed to be error-free when

compared to model results.

The topography of the area is represented by means of a SRTM

90 m resolution DEM which is used to derive the river (streamflow)

network. By knowing the river network, it is possible to divide the

basin into 68 sub-basins and estimate the main topographic charac-

teristics (maximum drainage length, drainage area and average el-

evation) for each of them. The river network is classified using the

approach proposed by Horton [46].
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