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a b s t r a c t

The capability of an ensemble Kalman filter (EnKF) to simultaneously estimate multiple parameters in a

physically-based land surface hydrologic model using multivariate field observations is tested at a small wa-

tershed (0.08 km2). Multivariate, high temporal resolution, in situ measurements of discharge, water table

depth, soil moisture, and sensible and latent heat fluxes encompassing five months of 2009 are assimilated. It

is found that, for five out of the six parameters, the EnKF estimated parameter values from different test cases

converge strongly, and the estimates after convergence are close to the manually calibrated parameter val-

ues. The EnKF estimated parameters and manually calibrated parameters yield similar model performance,

but the EnKF sequential method significantly decreases the time and labor required for calibration. The results

demonstrate that, given a limited number of multi-state, site-specific observations, an automated sequential

calibration method (EnKF) can be used to optimize physically-based land surface hydrologic models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties in model parameters are a dominant source of un-

certainty for hydrologic models [28]. The ensemble Kalman filter

(EnKF) [13] provides a promising approach for the automated cal-

ibration of hydrologic models [26,29,39,46]. Most previous stud-

ies applied EnKF to conceptual or process-based hydrologic mod-

els. Shi et al. [39] performed a multiple-parameter estimation for a

physically-based land surface hydrologic model, Flux-PIHM [37], via

EnKF and assimilating multivariate synthetic observations including

discharge, water table depth, soil moisture, land surface tempera-

ture, sensible and latent heat fluxes, and transpiration. The model-

ing and data assimilation system was implemented at the Shale Hills

watershed (0.08 km2) in central Pennsylvania, the site of the Susque-

hanna/Shale Hills Critical Zone Observatory (SSHCZO). Results from

the synthetic data experiments indicated that EnKF is capable of pro-

viding accurate estimation of multiple Flux-PIHM model parameters,

and the assimilation of multivariate observations including those cur-

rently available at the SSHCZO applied strong constraints to model

parameters.
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Real-data experiments, however, have notable difficulties that do

not exist with synthetic data experiments, because the errors in

model predictions expand to include the errors from forcing data,

domain configuration, observation bias, and model structure. When

EnKF is used to estimate parameter values, over-adjustment may oc-

cur, which may cause large changes in parameter values and param-

eter uncertainties, and lead to system “shocks”, when the dynamic

balance of model system is destroyed and the model attempts to re-

store the dynamic balance [18].

The goal of this research effort is to test the ability of the EnKF

system to estimate multiple parameters in Flux-PIHM with the as-

similation of real multivariate observations at a field site with co-

located measurements. Extensive and detailed field site characteri-

zation along with a broad array of observations is available at the

SSHCZO. This study site thus provides an unprecedented opportunity

for real-data assimilation experiment. We test the EnKF system’s abil-

ity to estimate Flux-PIHM model parameters with SSHCZO observa-

tions. Model performances with the EnKF-estimated parameter val-

ues and manually calibrated values are compared to assess the qual-

ity of the EnKF-estimated parameter values. In addition, we test the

performance of the data assimilation system when driven by atmo-

spheric reanalysis and remotely-sensed forcing data, to evaluate the

ability of the data assimilation method to adapt to commonly avail-

able continental-scale driver data.
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Table 1

Flux-PIHM model parameters, their plausible ranges of calibration coefficients, estimates from different test cases, and manual calibration values [37]. The test cases

are 1: Case0, 2: Case+, 3: Case−, 4: NLDAS, 5: MODIS, and 6: NLDAS+MODIS.

Parameter Description Range of calibration coefficient Test cases

1 2 3 4 5 6 Manual

�e Effective porosity (m3 m−3) 0.3–1.2 0.62 0.67 0.65 0.60 0.63 0.61 0.52

α van Genuchten soil parameter (m−1) 0–2.5 1.50 1.57 1.49 1.31 1.38 1.33 1.50

β van Genuchten soil parameter (dimensionless) 0.95–2.5 1.34 1.29 1.34 1.40 1.35 1.37 1.30

Rc min Minimum stomatal resistance (s m−1) 0.3–1.2 0.41 0.49 0.43 0.48 0.63 0.65 0.50

S Reference canopy water storage (mm) 0–5 3.15 4.53 1.13 3.80 3.45 0.55 2.00

Czil Zilitinkevich parameter (dimensionless) 0.1–10 1.15 1.09 1.23 0.81 1.32 0.93 0.70

2. Flux-PIHM EnKF system

Flux-PIHM [37] is a coupled land surface hydrologic model. Flux-

PIHM incorporates a land surface scheme into the Penn State Inte-

grated Hydrologic Model (PIHM) [21,33,34], which is a fully-coupled,

physically-based, spatially-distributed hydrologic model. The land

surface scheme in Flux-PIHM is adapted from the Noah land surface

model (LSM) [8,12]. The land surface and hydrologic components are

coupled by exchanging water table depth, infiltration rate, recharge

rate, net precipitation rate, and evapotranspiration rate between the

two model components.

A Flux-PIHM data assimilation system has been developed by in-

corporating EnKF for model parameter and state estimation [39] us-

ing the EnKF formulation from Snyder and Zhang [40]. In the Flux-

PIHM EnKF system, the Flux-PIHM model variables and the global

calibration coefficients of model parameters are concatenated into

a joint state parameter vector x, and are updated simultaneously

by EnKF using the state augmentation approach [1,3,19,25,46]. The

global calibration coefficient [32,37,44] is a scalar multiplier applied

to the corresponding soil or vegetation related parameter for all soil

or vegetation types, and is used to decrease the dimension of the joint

state parameter vector. The covariance relaxation method of Zhang

et al. [48, Eq. (5)] is applied on model parameters and variables in

order to avoid filter divergence [2]. In addition, the conditional co-

variance inflation method [1] is applied to model parameters. A qual-

ity control process [39] is performed after each EnKF analysis step to

ensure the parameters and state variables remain within physically

realistic or plausible ranges. Please see Shi et al. [37,39] for detailed

descriptions.

3. Experimental setup

The Flux-PIHM EnKF data assimilation system is implemented

at the Shale Hills watershed (0.08 km2) in central Pennsylvania.

The Shale Hills watershed is a small-scale, forested, V-shaped catch-

ment characterized by relatively steep slopes and narrow ridges. The

SSHCZO exists in this watershed. A real-time hydrologic monitoring

network (RTHnet) is operating in the SSHCZO, which provides real-

time and high-frequency observations from bedrock to the atmo-

spheric boundary layer.

The Shale Hills watershed model domain is decomposed into 535

triangular grids and 20 river segments, with an average grid size of

157 m2. There are five soil types and three vegetation types in the

model domain. The grid configuration, vegetation map, soil map, me-

teorological forcing, and a priori input data are the same as in Shi

et al. [37]. Given the small scale (0.08 km2) of the watershed, spatially

uniform forcing is used. The meteorological forcing (precipitation, air

temperature, relative humidity, downward longwave and solar radi-

ation, wind speed, and surface air pressure) data are obtained from

the RTHnet weather station and the surface radiation budget network

(SURFRAD) Penn State University station. The moderate resolution

imaging spectroradiometer (MODIS) 8-d leaf area index (LAI) data

[20,30] are rescaled based on the comparison between the MODIS

product and the CZO field measurements to drive the model [37]. The

parameters to be estimated are: effective porosity �e, van Genuchten

[42] soil parameters α and β , Zilitinkevich [49] parameter Czil, mini-

mum stomatal resistance Rc min, and reference canopy water capacity

S. The estimation of those parameters has been tested in synthetic

experiments [39]. The physically plausible ranges of the calibration

coefficients are presented in Table 1. Detailed descriptions and a pri-

ori values of those parameters can be found in Shi et al. [37,38].

A total of 30 ensemble members are used for each test case. The

ensemble members are generated by randomly perturbing the cal-

ibration coefficients of those six parameters within their plausible

ranges (Table 1). The parameters that are not estimated are set to

their manually calibrated values as in Shi et al. [37]. The manual cal-

ibration was performed using the “trial and error” strategy, using

outlet discharge, water table depth, soil water content, soil temper-

ature, and surface heat flux data from June to July 2009 to optimize

model parameters [37]. For each parameter (calibration coefficient)

φ, the values are randomly drawn from a Gaussian distribution, with

an initial standard deviation of σ0 = 0.2(φmax − φmin), where φmax

and φmin represent the upper and lower boundaries of the plausible

range, respectively. Among those parameters, Czil is perturbed in log

space. Shi et al. [39] showed that EnKF is capable of identifying the

interacting parameters and quantifying the correlations between pa-

rameters, without the need of a priori parameter correlation informa-

tion. We thus perturb the parameters such that the initial correlation

coefficient (the absolute value) between any two of those parame-

ters is less than or equal to 0.25, to avoid artificially high correlations

between parameters and observable variables.

All ensemble members start from 0000 UTC 1 January 2009, from

saturation in the relaxation mode [37]. The model time step is 1 min

and the output interval is 1 h. The first set of observations is assimi-

lated at 1700 UTC 4 April 2009. The calibration period is from 4 April

to 1 September, 2009. Shi et al. [39] found that the assimilation in-

terval for synthetic experiments at the Shale Hills watershed should

be larger than 72 h to avoid system “shocks” caused by EnKF updates.

In real-data experiments, however, we found that the system shocks

are often larger than with synthetic data, probably due to additional

errors such as model structural errors. Thus we set the assimilation

interval to 168 h to avoid any potential shocks to the system. The time

for assimilating the first set of observations is chosen to include the

discharge peak on 20 June 2009 considering the assimilation interval.

Six test cases, Case0, Case+, Case−, NLDAS, MODIS, and

NLDAS+MODIS are executed. The test cases Case0, Case+, and Case−
have different initial guesses of parameter values. For Case0, the ini-

tial ensemble means of parameters are set to the center of the physi-

cally plausible range, i.e., 0.5(φmax + φmin). For Case+ and Case−, the

initial ensemble means of parameters are set to 0.5(φmax + φmin) +
σ0 and 0.5(φmax + φmin) − σ0, respectively. These three test cases

are driven by locally-measured meteorological forcing and rescaled

MODIS LAI data. The test cases NLDAS, MODIS, and NLDAS+MODIS

have the same initial ensemble members as Case0. The test case NL-

DAS is driven by the forcing data for Phase 2 of the North Ameri-

can Land Data Assimilation System (NLDAS-2) [10,45] and rescaled
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