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a b s t r a c t

Streamflow forecasts are updated periodically in real time, thereby facilitating forecast evolution. This
study proposes a forecast-skill-based model of forecast evolution that is able to simulate dynamically
updated streamflow forecasts. The proposed model applies stochastic models that deal with streamflow
variability to generate streamflow scenarios, which represent cases without forecast skill of future
streamflow. The model then employs a coefficient of prediction to determine forecast skill and to quantify
the streamflow variability ratio explained by the forecast. By updating the coefficients of prediction peri-
odically, the model efficiently captures the evolution of streamflow forecast. Simulated forecast uncer-
tainty increases with increasing lead time; and simulated uncertainty during a specific future period
decreases over time. We combine the statistical model with an optimization model and design a hypo-
thetical case study of reservoir operation. The results indicate the significance of forecast skill in fore-
cast-based reservoir operation. Shortage index reduces as forecast skill increases and ensemble
forecast outperforms deterministic forecast at a similar forecast skill level. Moreover, an effective forecast
horizon exists beyond which more forecast information does not contribute to reservoir operation and
higher forecast skill results in longer effective forecast horizon. The results illustrate that the statistical
model is efficient in simulating forecast evolution and facilitates analysis of forecast-based decision
making.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Water resource system analysis faces the problem of unknown
future streamflow [17,21,26]. Conventionally, future streamflow
conditions are represented by streamflow variability and stochas-
tic models are developed for synthetic streamflow generation.
Streamflow sequences that contain statistical properties similar
to those of historical streamflow data are generated and then
applied to assist in water resource planning, e.g., reservoir capacity
determination, storage yield analysis, and irrigation system design
[15,18,25]. In recent years, streamflow forecasting has been
improved considerably, which has provided useful information
concerning future streamflow in real time. Meanwhile, streamflow
forecasting has not yet been perfected and remains characterized
by forecast uncertainty [11,23,34].

Streamflow variability and forecast uncertainty are two key
issues in water resource studies [1,5,27]. Streamflow variability
has been sufficiently addressed in stochastic hydrology. Parametric
models (e.g., time series models) and nonparametric models (e.g.,
K-nearest neighbor models) are used in synthetic streamflow

generation [6,30,33]. By contrast, only a few stochastic models
are concerned with forecast uncertainty. Water resources studies
illustrated that applications of streamflow forecasts lead to more
economic benefits compared with conventional operating rules,
which are considerably affected by forecast uncertainty [9,23,28].
Meanwhile, previous forecast-based decision making provides a
limited number of samples, which causes difficulty in generalizing
the relationship between economic benefit and forecast uncer-
tainty. The use of stochastic models enables explicit characteriza-
tion and simulation of forecast uncertainty and can bridge this
gap [2,10,23]. Based on stochastic models that address streamflow
variability, this study develops a stochastic model for simulating
forecast uncertainty.

Combining stochastic models of forecast uncertainty with opti-
mization models facilitates analysis of forecast-based decision
making. For example, Maurer and Lettenmaier [22], Maurer and
Lettenmaier [23] developed stochastic models of predictability
and evaluated economic benefits from predictability of seasonal
streamflow. Georgakakos and Graham [10] and Graham and
Georgakakos [12] assessed the benefits of streamflow forecasts
and illustrated that the use of forecast is affected by characteristics
of reservoir systems. Zhao et al. [37,39] constructed models of the
evolution of streamflow forecasts and evaluated the effects of
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Gaussian and non-Gaussian forecast uncertainties on reservoir
operation. These studies are based on parametric stochastic models
for which the statistical distributions and a number of related
parameters should be specified. Using parametric models, we
develop a forecast-skill-based model of forecast evolution (FMFE)
with three advantageous properties. First, the model is based on
forecast skill, which is a key metric for forecast evaluation that
can be derived from previous forecasts. Second, the model is non-
parametric and does not involve tedious statistical specifications,
e.g., mean, variance, and covariance. Third, the model takes full
advantage of stochastic models, which are used in synthetic
streamflow generation.

In the remainder of the paper, Section 2 presents a brief sum-
mary of the parametric models used to simulate streamflow fore-
casts. Section 3 details the nonparametric FMFE model and
examines the properties of simulated forecast uncertainty. Sec-
tion 4 demonstrates an application of the model to simulation of
streamflow forecast. Section 5 presents a decision making analysis
and illustrates effect of forecast skill on forecast-based reservoir
operation. Section 6 provides the discussions and conclusions.

2. Simulation of streamflow forecast

Using time indices s and t, and denoting fs,t as the forecast of
streamflow qt that is made at period s, and the forecast horizon
as H, the forecasts made at period s form a forecast vector:

Fs;� ¼ ½ fs;s fs;sþ1 fs;sþ2 . . . fs;sþH � ð1Þ

H + 1 forecasts are made at period s. Moreover, H + 1 forecasts cor-
respond to qt made during the preceding periods t � H, t � H + 1, . . .,
and t � 1, as well as period t, form the following vector:

F�;t ¼ ½ ft�H;t ft�Hþ1;t ft�Hþ2;t . . . ft;t � ð2Þ

Fs;� and F�;t are differentiated in Eqs. (1) and (2), respectively. We
present a brief summary of the stochastic models used in the sim-
ulation of streamflow forecasts.

2.1. Simulation of forecasts made in one period

Forecast uncertainty can generally be indicated by the gap
between forecast fs,t and the real value of streamflow qt

[20,28,35]. In the deterministic case, forecast uncertainty is repre-
sented by forecast error es,t,

es;t ¼ fs;t � qt ð3Þ

Following Eqs. (1) and (3), the uncertainty of the streamflow fore-
casts generated during period s is characterized by the following
vector:

Es;� ¼ ½ es;s es;sþ1 es;sþ2 . . . es;sþH � ð4Þ

For the fixed period s, the forecast uncertainty in fs,t tends to
increase with t, i.e., a longer lead time leads to increased uncer-
tainty [22,23], as shown in Fig. 1.

For the sake of simplicity, the stochastic models of forecast
uncertainty can assume that es,s+i (i = 0,1,2, . . .,H) are mutually
independent, which allows for the independent simulation of
es,s+i. The assumption of Gaussian distribution leads to the follow-
ing [23]:

es;sþi � Nðmi;r2
i Þ ði ¼ 0;1;2; . . . ;HÞ ð5Þ

In Eq. (5), mi and r2
i are the mean and variance of es;sþi, respectively.

Thus, es;sþi is simulated by:

es;sþi ¼ mi þ riei ð6Þ

In Eq. (6), ei is a standard Gaussian random number, i.e.,
ei � Nð0;12Þ. Other statistical distributions, e.g., log-Gaussian distri-
bution and Gamma distribution, have also been used to simulate
forecast uncertainty [12,28].

The variance r2
i of es,s+i (Eq. (5)) has often been used as an

indicator of the magnitude of forecast uncertainty [19,35,36]. In
simulations of single-period forecast uncertainties, the variance
is usually set as:

r2
0 6 r2

1 6 r2
2 6 � � � 6 r2

H ð7Þ

This equation indicates the characteristic longer lead time induces
greater forecast uncertainty. The variance is also set as:

r2
H 6 varðqsþHÞ ð8Þ

where var(qs+H) indicates streamflow variability within time period
s + H. This equation implies that the magnitude of forecast
uncertainty cannot be greater than that of streamflow variability.
Otherwise, having no forecast would be a better option [23].

Comparison between forecast uncertainty and streamflow vari-
ability indicates the forecast skill. Denoting the variability of qs+i

(i = 0,1, 2, . . .,H) as varðqsþiÞ and the uncertainty of the correspond-
ing forecast fs,s+i as r2

i (i = 0,1,2, . . .,H), the coefficient of prediction
(Cp) measures the fraction of streamflow variability explained by
the forecast [22,23,29], i.e.,

r2
i ¼ ð1� CpÞvarðqsþiÞ ði ¼ 0;1; . . . ;HÞ ð9Þ

In Eq. (9), the case Cp = 1 represents perfect forecast skill, such that
r2

i becomes zero; the case Cp = 0 stands for no forecast skill, such
that r2

i ¼ varðqsþiÞ. The phenomenon whereby Cp decreases with
lead time implies that r2

i increases with i, which indicates decreas-
ing forecast skill and increasing uncertainty with increasing forecast
lead time [23].

Eqs. (4)–(9) illustrate the simulation steps for independent fore-
cast uncertainties. Incorporating the variance–covariance matrix
VCVE enables the simulation of correlated uncertainties [38], i.e.,

VCVE ¼

ve0 cove0;1 cove0;2 � � � cove0;H

cove1;0 ve1 cove1;2 � � � cove1;H
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In Eq. (10), covei,j (i, j = 0,1,2, . . .,H) denotes the covariance of es;sþi

and es;sþj; vei is the variance of es;sþi, which is also denoted as r2
i

in Eq. (5). Variance–covariance matrices are semi-definite. Through
Cholesky decomposition, VCVE can be decomposed into the product
of a matrix multiplied by its transpose, i.e.,

VCVE ¼ VE�VET ð11Þ

Fig. 1. Longer forecast lead time leads to greater forecast uncertainty.
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