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Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a con-
taminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic
states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an
ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This
is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow
is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kal-
man updates of the contaminant model with the data. The problem is better handled when both flow and
contaminant states are concurrently estimated using the traditional joint state augmentation approach.
In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled sys-
tem by treating the flow and the contaminant models separately while intertwining a pair of distinct
EnKFs, one for each model. The presented strategy only deals with the estimation of state variables
but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state
estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of
both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating
scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of
the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint
approach. We conducted synthetic numerical experiments based on various time stepping and observa-
tion strategies to evaluate the dual EnKF approach and compare its performance with the joint state aug-
mentation approach. Experimental results show that on average, the dual strategy could reduce the
estimation error of the coupled states by 15% compared with the joint approach. Furthermore, the dual
estimation is proven to be very effective computationally, recovering accurate estimates at a reasonable
cost.
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1. Introduction and motivation

Geologists, subsurface engineers and hydrologists have been
working for decades to understand the physical and dynamical
processes that lead to understanding the delicate nature and con-
figuration of the earth’s subsurface. To this end, one method has
been to build numerical hydrologic models that captures the com-
plicated behaviors of fluids and solids in the subsurface [1]. The fo-
cus of these models is to simulate and predict dynamical fluxes and
energies, defined as state variables, as accurately as possible based
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on selected time-invariant parameters that describe the subsurface
geometry, fluid and rock properties, and surface-subsurface inter-
actions [2]. Assessing the quality of the output of these models
then became an issue.

Indeed, because of the large number of poorly understood
parameters and of the presence of model uncertainties, the outputs
of these numerical models are not always accurate. To improve
these models, efforts have been directed toward calibrating their
parameters using optimization-based techniques [3-8]. These cal-
ibration and inverse methodologies, which generally rely on ad-
joint-based or statistical Monte Carlo type approaches, aim at
minimizing long-term prediction errors using historical batches
of hydraulic head data, phase saturations, contaminant concentra-
tions, etc. The limitations associated with these methods include
their extensive computational burden and data storage, lack of
an efficient approach to update the estimated parameters with


http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2013.07.011&domain=pdf
http://dx.doi.org/10.1016/j.advwatres.2013.07.011
mailto:ibrahim.hoteit@kaust.edu.sa
http://assimilation.kaust.edu.sa/
http://dx.doi.org/10.1016/j.advwatres.2013.07.011
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres

76 M.E. Gharamti et al./Advances in Water Resources 60 (2013) 75-88

new observations, and the inability to take into account different
sources of uncertainty in the system [2,3,9].

As an attempt to go beyond the calibration methods, sequential
data assimilation techniques were successfully introduced as effi-
cient solutions to improve hydrological models [10]. Data assimila-
tion schemes have the advantage of accounting for model errors
that are not only present in the uncertain parameters but also in
the model structure and inputs, such as external forcings (recharge,
river-aquifer interactions, etc.) [9]. Sequential data assimilation
also does not require storage of all past information about the
states and parameters by allowing online updating of the system
variables using incoming observations.

There are different assimilation techniques that vary in struc-
ture depending on the nonlinearity, complexity and dimensions
of the systems. From these, we mention the particle filter (PF)
[11], which has been recently used in different hydrologic studies
for tackling state-parameter estimation problems. PF can handle
any type of statistical distribution (not necessarily Gaussian) and
is well suited for strongly nonlinear dynamics [12-19]. It is based
on forming a large set of particles that sample the state and param-
eter space according to a given prior distribution. The particles are
propagated in time with the dynamical model and then weighted
with available measurements according to the data-prediction
misfit. Because of the high computational requirements of the PF,
the more popular assimilation tool known as the Ensemble Kalman
Filter (EnKF) [20-22], which is also based on Monte Carlo sam-
pling, is much often used. The EnKF and its variants, which feature
a Gaussian Kalman update [14,15], are widely used in hydrology,
e.g., [2,6,8,9,23-33]. The EnKF has been shown to be efficient in
handling nonlinear models with Gaussian uncertainties. It is fur-
ther easy to implement and includes a general framework for state
and parameter estimation.

Various hydrogeological studies have been conducted to tackle
the state-parameter estimation problem with the EnKF. Two ap-
proaches were mainly considered: joint and the dual state-param-
eter approaches. The standard joint approach concurrently
estimates the state and the parameters in a single augmented vec-
tor and has been extensively applied to hydrological problems, e.g.,
[9,25,27,34,35]. Advocates of the dual approach argue that the joint
approach introduces important inconsistencies that could lead to
unstable estimation, particularly with large dimensions and in
highly nonlinear systems [2,36-39]. In the dual formulation, two
filters are run in parallel; one for the parameters and the other
for the states [40,41]. The parameters could be set to take some
random walk while waiting to be updated indirectly by the state
variables data [2,37]. It is worth mentioning that the dual estima-
tion has been also applied in the variational assimilation frame-
work, e.g., [42-44].

In this work, we investigate and tackle an essential estimation
problem that is similar in concept to the state-parameter one. This
problem arises in coupled models where at least two models, such
as subsurface flow and contaminant transport, are dynamically
coupled. In this one-way coupled system, reliable simulations re-
quire accurate flow and transport simulators. However, these mod-
els, especially the one for flow, are often far from being perfect
because of many sources of uncertainties. If the flow model is
uncertain, this would affect the solution of the transport model be-
cause uncertain flow outputs, such as hydraulic heads and Darcy
velocities, are used as inputs to the transport model, which simply
sees these outputs as “time-varying” parameters. If the EnKF is to
be employed in such a framework at every assimilation cycle, esti-
mates of the flow and transport states could be handled using
either a joint or, as we will introduce here, a dual approach. The
key point is that observations from both models are available, un-
like in the state-parameter case in which only data from state vari-
ables are used to update the static parameters. Previous estimation

studies with similar coupled hydrological systems have been con-
ducted following the joint EnKF approach only, e.g., [26,27]. In this
work, we introduce a dual-EnKF framework for efficient sequential
data assimilation into one-way coupled models. This method can
be seen as an extension of the dual state-parameter estimation
method to a dual state-state estimation method for one-way cou-
pled models. We formulate the dual states estimation procedure
from a Bayesian perspective and present its EnKF-based solution.
We then implement and evaluate the joint and dual estimation
strategies with a coupled flow and transport system in a confined
aquifer using the standard (stochastic) EnKF [20,21].

The remainder of this paper is organized as follows: Section 2
presents the general ensemble data assimilation framework. Sec-
tion 3 discusses the joint states estimation method before intro-
ducing the dual estimation strategy for one-way coupled models.
In Section 4, a synthetic example of a coupled subsurface transport
model with results from assimilation experiments is presented. Fi-
nal conclusions are given in Section 5.

2. Ensemble data assimilation

Sequential data assimilation aims at optimally estimating the
state of a dynamical system using all available observations up to
the estimation time. Modeling the system’s uncertainties as ran-
dom variables, this procedure is often implemented following the
standard recursive Bayesian estimation framework [22]:

» Start from the probability distribution function (pdf) of the state
X¢_1 at time t,_; given all available observations up to t;_;
denoted as y9, ;. This is referred to as the analysis pdf at t;_4
and denoted as p(Xx_1[¥3,_;)-

» For the forecast, propagate the analysis pdf to the time of the
next available observation t,. Assuming Markovian processes,
this is done using the Chapman-Kolmogorov equation [46].
The resulting forecast pdf at time ;. is p(Xc[yS,_;)-

» Update the forecast distribution with incoming observations, y,
to obtain the new analysis distribution, p(xc[y?,), using the
Bayes rule.

» Once the update step is done, start a new forecast step.

The optimal estimate of the state x given observation y, p(x|y)
can be understood as the value that best describes a realization
of x according to the given observation, y. From a statistical point
of view, different optimal estimators can be formulated [45,46]
and the most common ones are the minimum variance estimator
(MV), the maximum a posteriori estimator (MAP) and the maxi-
mum likelihood estimator (ML). These estimators differ in terms
of their objective functions. For instance, the MV estimator mini-
mizes the spread around the state, x, whereas the MAP estimator
looks for x that maximizes the conditional pdf, p(x|y).

Consider now the generic discrete space-time dynamical
system

X = My(Xg-1, Uk) + N, v

where ./, is a nonlinear dynamical operator integrating the state
forward from time t;_; to ti,u, is an input forcing to the system,
and #, is a random variable assumed to be uncorrelated in time
describing the system noise (or model error) with a normal distri-
bution, .#°(0, Q). The observation equation is written as

Vi = Hi(X) + &, 2)

where H, is the observational operator mapping the state variables
to the measured ones and ¢ is a random observational error that is
assumed to be uncorrelated in time and also uncorrelated with the
model noise, with a Gaussian distribution, .4°(0, R). Denote by Ny
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