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a b s t r a c t

We have conducted a series of high-resolution numerical experiments using the Pair-Wise Force
Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. First, we derived analytical expres-
sions relating parameters in the PF-SPH model to the surface tension and static contact angle. Next, we
used the model to study viscous fingering, capillary fingering, and stable displacement of immiscible flu-
ids in porous media for a wide range of capillary numbers and viscosity ratios. We demonstrated that the
steady state saturation profiles and the boundaries of viscous fingering, capillary fingering, and stable dis-
placement regions compare favorably with micromodel laboratory experimental results. For a displacing
fluid with low viscosity, we observed that the displacement pattern changes from viscous fingering to
stable displacement with increasing injection rate. When a high viscosity fluid is injected, transition
behavior from capillary fingering to stable displacement occurred as the flow rate was increased. These
observations are also in agreement with the results of the micromodel laboratory experiments.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The efficiency of many engineering applications such as oil
recovery, remediation of DNAPL, and geological CO2 sequestration
can be adversely affected by unstable immiscible flows [10]. As a
result, unstable immiscible displacement has been a subject of
extensive pore-scale theoretical, experimental, and numerical re-
search [1,3,5,6,9–11,16,18,29,32]. A clear understanding of the
macro-scale consequences of pore-scale displacement instabilities
in porous media is therefore vital for such applications. Despite the
attention paid to unstable displacement at the pore-scale, a macro-
scale description of the resulting behavior remains a challenge to
date [28]. Macro-scale models often use empirical constitutive
relationships between capillary pressure, saturation, and relative
permeability, which neglect the effects of unstable behaviors such
as fingering [4,7,12,21]. Therefore, it is important to incorporate
the effects of unstable flow behaviors in constitutive relationships
in order to improve the predictive capability of the macro-scale
models.

In general, the displacement behavior in porous media is deter-
mined by the balance between capillary, viscous, and gravity
forces. Here we consider a horizontal flow in a two-dimensional
porous medium. Such flows have been studied experimentally
using quasi-two-dimensional micromodels, in which (when placed

horizontally) the effect of gravity is negligible compared to capil-
lary and viscous forces. The flow displacement in the absence of
gravity can be described by two non-dimensional numbers: the
capillary number Ca ¼ vld=r and viscosity ratio M ¼ ld=lr , where
v is the average pore-scale velocity of the displacing fluid, ld is the
viscosity of the displacing fluid, r is the interfacial tension, and lr

is the viscosity of the resident fluid. Lenormand et al. [16] did pio-
neering work on studying and visualizing pore-scale displacement
phenomenon using micromodels. They established three basic dis-
placement regimes: capillary fingering, viscous fingering, and sta-
ble displacement. Viscous fingering occurs at high flow rates
(high Ca), when a low viscosity (high mobility) fluid invades a high
viscosity (low mobility) fluid and is characterized by narrow for-
ward progressing flow paths. Capillary fingering occurs at low flow
rates (low Ca) over a wide range of viscosity ratios. Capillary fin-
gering takes place in the form of wide forward and lateral nonwett-
ing phase flow paths. Stable displacement occurs at high flow rates
when a high viscosity fluid displaces a low viscosity fluid and has
the form of a flat moving front with no fingering behaviors. As M
increases, flow crosses over from viscous fingering to the stable
displacement region. As Ca increases, flow crosses over from capil-
lary fingering to the stable displacement region. The existence of
such regions was later confirmed by many authors using micro-
model experiments [6,10,11,32] and numerical models
[1,5,6,10,16,17].

Due to the complexity of pore geometries and the non-linearity of
the multiphase flow equations, most of the pore-scale numerical
models rely on various simplifications of the pore geometry and/or
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flow equations, potentially affecting the predictive capability of the
models. For example, pore-network models use a simplified repre-
sentation of pore geometry and approximate transient flow with a
steady-state Poiseuille law (e.g., [1,5,16]). Statistical models are able
to capture certain displacement regimes. For example, Diffusion-
Limited Aggregation (DLA) models have been used to model viscous
fingering, anti-DLA models – stable displacement, and Invasion Per-
colation with Trapping (IPT) models have been used to simulate cap-
illary fingering [6,10,17]. The main deficiency of such ‘‘specialized’’
models is that they cannot capture transitions from one regime to
another.

Meso-scale methods such as the Lattice Boltzmann method
[8,14] and Dissipative Particle Dynamics [2,30] can be used to model
complex multiphase flows in domains with realistic pore geome-
tries. While these models have been shown to capture many quali-
tative features of the multiphase pore-scale flow, they do not solve
Navier–Stokes equations directly, complicating the interpretation
of the numerical results. Grid-based methods with implicit front
tracking schemes such as the Level Set method and Volume of Fluid
method have been recently proposed for pore-scale simulations of
multiphase flow. However, due to a relatively high computational
cost, they have only been applied to simple pore geometries. A de-
tailed review of these and other numerical methods for pore-scale
flow can be found in Meakin and Tartakovsky [20].

In this work we use the Pair-Wise Force Smoothed Particle
Hydrodynamics (PF-SPH) to simulate multiphase flow in porous
media [23,27]. Smoothed Particle Hydrodynamics is a meshless
Lagrangian particle technique that has several advantages for mod-
eling multiphase flow. As a fully Lagrangian method, SPH does not
suffer from numerical dispersion and does not need complex inter-
face tracking schemes to model interfacial dynamics. Due to its iso-
morphism with molecular dynamics, complex dynamical wetting
behavior can be modeled with relative ease. For example, in the
PF-SPH model the surface tension and wetting behavior of fluids
is modeled with pair-wise molecular-like forces. The accuracy
and consistency of the PF-SPH model for simulating surface angle
and static and dynamic contact angles for flows in domains with
simple geometries, such as flat surfaces and fractures with uniform
apertures have been demonstrated in a number of papers including
Tartakovsky and Meakin [26,27]; Kordilla et al. [15].

Traditionally, periodic boundary conditions for fluid pressure
and velocity have been used in SPH models, and the flow has been
driven by a gravity/body force. In general, two-phase flow is not
periodic and periodic boundary conditions cannot be used to de-
scribe such flows accurately. Also, in many laboratory experiments
the fluids are introduced in a flow cell with a constant flow rate. In
the present work, we propose a new method for implementing the
prescribed flux boundary condition in SPH.

We use the PF-SPH model to simulate displacement of a fluid ini-
tially occupying a micro-cell with another fluid injected into the cell
at a constant flow rate under a wide range of Ca and M numbers.
We compare the model results with the experimental results of Lenor-
mand et al. [16] and Zhang et al. [32], who conducted a series of dis-
placement experiments in a micromodel representing a uniform
two-dimensional porous medium. We demonstrate that the PF-SPH
model is capable of capturing different flow regimes including viscous
fingering, capillary fingering, and stable displacement and the transi-
tion behaviors. We believe that this is an initial step towards develop-
ing improved constitutive relationships for macroscale models.

2. Smoothed particle hydrodynamics model

In this section we present PF-SPH equations obtained from
discretization of the Navier–Stokes equations governing multi-
phase flow at the pore-scale. The derivation of the SPH equations
can be found in Tartakovsky and Meakin [27] and a parallel solver

for the SPH equations is described in Palmer et al. [23]. We also
present a novel method for parameterizing the PF-SPH equations
and a novel implementation of the constant flux boundary condi-
tion (BC) in the SPH method.

2.1. Governing equations

At the pore-scale the flow can be described by the combination
of the continuity and momentum conservation equations:

Dqa

Dt
¼ �qa r � vað Þ; ð1Þ

qa Dva

Dt
¼ � rPa� �

þr: laðrva þrvaTÞ
h i

þ qag; ð2Þ

where superscript a refers to properties of the wetting and non-
wetting phases; va is the velocity vector; qa is the density; Pa is
the pressure; la is the dynamic viscosity; g is the gravitational
acceleration; and D=Dt ¼ @=@t þ v � r denotes a total derivative.

The Young–Laplace law describes the pressure discontinuity at
the fluid–fluid interface due to the interfacial tension, r,

Pn � Pw ¼ Sr; ð3Þ

where superscripts n and w denote the non-wetting phase and wetting
phase, correspondingly; and S is the curvature of the interface. No-slip,
no-flow boundary conditions are imposed at the fluid–solid interfaces.
At the fluid–fluid–solid interface, the contact angle h is specified.

In the SPH method it is convenient to approximate incompress-
ible fluids with slightly compressible fluids and to use an artificial
equation of state to close Eqs. (1) and (2).

2.2. SPH discretization scheme

In the SPH method, fluid and solid phases are represented by a
set of N particles, which carry properties of each phase such as fluid
composition, mass, density, viscosity etc. In the following, we refer
to particles discretizing the fluid phases as fluid particles and those
discretizing the solid phase as solid particles. The SPH method is
based on a meshless interpolation scheme that allows estimation
of a vector or scalar function AðrÞ at position r in terms of the val-
ues of the function at the discretization points:

AðrÞ �
XN

j¼1

mj
Aj

qj
W jr� rjj;h
� �

; ð4Þ

where subscript j denotes a property associated with particle j, rj

denotes position of particle j, Aj ¼ AðrjÞ, N is the total number of
SPH particles, and mj, mj=qj, and qj ¼ qðrjÞ are the mass, volume,
and density of particle j, respectively. The function W is the SPH
smoothing weighting function with the compact support h
(Wðjrj > hÞ ¼ 0). Due to the compactness of W, the summation in
Eq. (4) can be replaced with a summation only over particles within
the distance h from r. The weighting function W must have at least a
continuous first derivative and satisfy the normalization condition,Z

Wðjr� r0j;hÞdr0 ¼ 1; ð5Þ

where integration is performed over the entire domain of A. In the
h! 0 limit, the weighting function, W, is required to reduce to the
Dirac delta function:

lim
h!0

Wðr� r0; hÞ ¼ dðr� r0Þ: ð6Þ

2.2.1. Pair-wise force SPH method
In the Pair-Wise Force SPH (PF-SPH) method, the momentum

conservation equation for each fluid phase is discretized as [27],
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