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a b s t r a c t

Modeling transport phenomena in discretely hierarchical systems can be carried out using any number of
upscaling techniques. In this paper, we revisit the method of volume averaging as a technique to pass
from a microscopic level of description to a macroscopic one. Our focus is primarily on developing a more
consistent and rigorous foundation for the relation between the microscale and averaged levels of
description. We have put a particular focus on (1) carefully establishing statistical representations of
the length scales used in volume averaging, (2) developing a time–space nonlocal closure scheme with
as few assumptions and constraints as are possible, and (3) carefully identifying a sequence of simplifi-
cations (in terms of scaling postulates) that explain the conditions for which various upscaled models are
valid. Although the approach is general for linear differential equations, we upscale the problem of linear
convective diffusion as an example to help keep the discussion from becoming overly abstract.

In our efforts, we have also revisited the concept of a closure variable, and explain how closure vari-
ables can be based on an integral formulation in terms of Green’s functions. In such a framework, a clo-
sure variable then represents the integration (in time and space) of the associated Green’s functions that
describe the influence of the average sources over the spatial deviations. The approach using Green’s
functions has utility not only in formalizing the method of volume averaging, but by clearly identifying
how the method can be extended to transient and time or space nonlocal formulations.

In addition to formalizing the upscaling process using Green’s functions, we also discuss the upscaling
process itself in some detail to help foster improved understanding of how the process works. Discussion
about the role of scaling postulates in the upscaling process is provided, and poised, whenever possible, in
terms of measurable properties of (1) the parameter fields (including the indicator fields describing the
medium geometry) associated with the transport phenomenon of interest, and (2) measurable properties
of the independent variable itself. To highlight the relevance of this interpretation we study the bench-
mark problem of linear nonlocal diffusion in porous media.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Transport phenomena modeling in hierarchical, multiscale sys-
tems requires the systematic passing of information from one scale
to the others. Despite current advances in computational capabili-
ties, it is still generally not feasible to model a complete macro-
scopic system (such as the discretely hierarchical system
depicted in Fig. 1) by performing direct numerical simulations of
microscale formulations. Furthermore, even if such a feat were
possible, there is the question about how one would usefully apply
such information. One method to address this problem is to di-
rectly derive models at an intermediate level of resolution between
the microscale and the macroscale, using an averaging operator.
The averaging operator itself may be viewed as the response of

an instrument probing intensive field variables; this interpretation
has been discussed by Baveye and Sposito [9] and by Cushman
[24]. In this special issue of Advances in Water Resources two differ-
ent (but related) perspectives on averaging are presented. One
(known generally as the method of volume averaging with closure,
or MVA) is represented by this paper; the second presents an over-
view of the thermodynamically constrained averaging theory
(TCAT), which has been clearly presented in a separate paper by
Gray et al. [34].

In this work, we consider the averaging of a linear convection–
dispersion-reaction equation starting from the sub-pore scale of
resolution. Developing an averaged model consists of applying an
averaging operator to the relevant balances as they occur for the
microscale level of resolution (Level I in Fig. 1). The averaging
process allows one to develop a set of equations and boundary con-
ditions at the macroscale level (Level III in Fig. 1). The result is a
systematic reduction in the number of degrees of freedom involved
in the microscale model by means of the process of upscaling (cf.
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Nomenclature

a radius of the cylindrical-shaped obstacle in Chang’s unit
cell, m

Ac a closure variable that maps rrhwci
c onto ~wc, m2

Acj;M surface domain of the fluid–solid interface within the
entire macroscopic volume VM

Ace;M surface domain associated with the external boundary
of the macroscopic volume VM and intersecting the c-
phase

Aje;M surface domain associated with the external boundary
of the macroscopic volume VM and intersecting the j-
phase

Ae;M surface domain associated with the external boundary
of the macroscopic volume VM ðAe;M ¼ Ace;M [ Aje;MÞ

AcjðxÞ surface domain of the fluid–solid interface within the
averaging region

AceðxÞ domain of the entrance/exit boundaries on the surface
of the averaging domain VðxÞ

AcjðxÞ area of the c–j interface within the averaging domain
VðxÞ, m2

bc closure variable that maps rhwci
c onto ~wc, m

cAc microscale concentration of species A in the c-phase,
mol/m3

~cAc concentration deviations of species A, mol/m3

hcAcic intrinsic averaged concentration, mol/m3

Cc intrinsic averaged concentration, used in Section 7 to
simplify notation, mol/m3

Dc molecular diffusion coefficient, m2/s
Dc diffusion tensor in the c-phase, m2/s
D0;eff effective diffusivity tensor, m2/s
D2;eff second-order correction tensor, m4/s
ei unit vectors defining Cartesian coordinate system,

i ¼ f;g; n
f microscale volumetric source term
hf ic intrinsic average of f
Ff�g Fourier transform
F�1f�g inverse Fourier transform
g microscale surface source term
Gðx; t; y; sÞ a Green’s function
G source term in the closure problem, as defined by Eq.

(5.3b)
I initial distribution of wc
I initial distribution of ~wc, as defined by Eq. (5.3d)
I the identity tensor
k1 homogeneous first-order reaction rate parameter in the

c-phase
ks heterogeneous first-order surface reaction rate parame-

ter at the c–j interface
K0;K1;K2;K3 kernel functions
li unit cell lattice vectors, i ¼ x; y; z, m
‘c the characteristic length (integral scale) for the indica-

tor function Uc, m
‘pc integral scale for the parameter field pcðxÞ, where pcðxÞ

may be any of the parameter fields that appear in the
microscale differential balance for wc

‘ch diameter of Chang’s unit cell, m
‘K characteristic length associated with a kernel function,

m
‘~wc

characteristic length associated with the dependent var-
iable deviation field, m

L characteristic length associated with the macroscale, m
LPc characteristic length (integral length scale) associated

with the average of a parameter or source field Pc, m
Lhwci

c characteristic length (integral length scale) associated
with hwci

c, m
Lf�g linear second-order differential balance operator, m/s

L0f�g portion of Lf�g containing averaged parameter fields,
m/s

~Lf�g portion of Lf�g containing deviations of the parameter
fields, m/s

Mp p-th moment of distribution
ncj unit normal vector directed from the c-phase toward

the j-phase
N nonlocal contribution associated with hwci

c, and defined
in Eq. (4.14b)

N nonlocal contribution associated with ~wc, and defined in
Eq. (4.14c)

O order of magnitude symbol
pc a generic parameter or source field for the microscale

balance; p–c may be a scalar, vector, or tensor field
Pc intrinsic average of pc
~pc spatial deviations of pc
P a closure variable
Q contribution of the initial condition to the fields of ~wc, as

defined by Eq. (5.3c)
r the radial component of a cylindrical coordinate system,

m
r position vector, m
r0 radius of the averaging region, m
RK2 microscale correlation function associated to the kernel

function K2, m�2

Rhwci
c macroscale correlation function associated to hwci

c, m�2

sc closure variable that maps hwci
c onto ~wc

S source term in the closure problem, as defined by Eq.
(5.3a)

Sc second spatial moment (normalized) of a kernel func-
tion, m2

t time, s
t� characteristic time measure associated with the micro-

scale, s
t�K characteristic time measure associated with a kernel

function in the closure problem, s
T� characteristic time (the integral time scale) associated

with the macroscale, s
T�hwcic characteristic time (the integral time scale) associated

with the changes in hwci
c , s

vc convective fluid velocity in the c-phase, m/s
hvcic superficial average fluid velocity in the c-phase, m/s
~vc deviation for the fluid velocity in the c-phase from the

spatial average veloctiy, m/s
VM domain of the entire macroscopic volume under consid-

eration (Fig. 1)
Vc;M domain of the fluid phase within the entire macroscopic

volume VM

Vj;M domain of the solid phase within the entire macroscopic
volume VM

VðxÞ ¼ VcðxÞ [ VjðxÞ, domain of an averaging volume
VcðxÞ domain occupied by the c-phase within the averaging

volume VðxÞ
VjðxÞ domain occupied by the j-phase within the averaging

volume VðxÞ
V(x) volume of the averaging domain VðxÞ, m3

VcðxÞ volume of the c-phase contained within the averaging
domain VðxÞ, m3

x, y, z position vectors, m

Greek symbols
a1;a2 measures of the magnitude of a Green’s function as

specified by Eqs. (5.12a) and (5.12b)
ec volume fraction (porosity) of the fluid phase
d Dirac’s delta function
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