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a b s t r a c t

During the past decades much progress has been made in the development of computer based methods
for parameter and predictive uncertainty estimation of hydrologic models. The goal of this paper is two-
fold. As part of this special anniversary issue we first shortly review the most important historical devel-
opments in hydrologic model calibration and uncertainty analysis that has led to current perspectives.
Then, we introduce theory, concepts and simulation results of a novel data assimilation scheme for joint
inference of model parameters and state variables. This Particle-DREAM method combines the strengths
of sequential Monte Carlo sampling and Markov chain Monte Carlo simulation and is especially designed
for treatment of forcing, parameter, model structural and calibration data error. Two different variants of
Particle-DREAM are presented to satisfy assumptions regarding the temporal behavior of the model
parameters. Simulation results using a 40-dimensional atmospheric ‘‘toy’’ model, the Lorenz attractor
and a rainfall–runoff model show that Particle-DREAM, P-DREAM(VP) and P-DREAM(IP) require far fewer
particles than current state-of-the-art filters to closely track the evolving target distribution of interest,
and provide important insights into the information content of discharge data and non-stationarity of
model parameters. Our development follows formal Bayes, yet Particle-DREAM and its variants readily
accommodate hydrologic signatures, informal likelihood functions or other (in)sufficient statistics if
those better represent the salient features of the calibration data and simulation model used.

Published by Elsevier Ltd.

1. Introduction and scope

Hydrologic models, no matter how sophisticated and spatially
explicit, aggregate at some level of detail complex, spatially dis-
tributed vegetation and subsurface properties into much simpler
homogeneous storages with transfer functions that describe the
flow of water within and between these different compartments.
These conceptual storages correspond to physically identifiable
control volumes in real space, even though the boundaries of these
control volumes are generally not known. A consequence of this
aggregation process is that most of the parameters in these models
cannot be inferred through direct observation in the field, but can
only be meaningfully derived by calibration against an input–out-
put record of the catchment response. In this process the parame-
ters are adjusted in such a way that the model approximates as
closely and consistently as possible the response of the catchment

over some historical period of time. The parameters estimated in
this manner represent effective conceptual representations of spa-
tially and temporally heterogeneous watershed properties.

Fig. 1 provides a schematic overview of the resulting model
calibration problem. In this plot, the symbol a represents the
observation process that provides n measurements of forc-
ing, u1:n = {ut; t = 1, . . . ,n} (observed input) and output ~y1:n ¼
f~yt ; t ¼ 1; . . . ;ng (observed response). These measurements may
deviate significantly from their actual values due to measurement
error and uncertainty. The square box represents the conceptual
model with functional shape f(�) which is only an approximation of
the underlying system (the curly box) it is trying to represent. The la-
bel output on the y-axis of the plot on the right hand side can repre-
sent any time series of data; in this paper we consider it to be the
streamflow response and represent this with the n-dimensional
vector y1:n = {yt; t = 1, . . . ,n} for the model output (simulated
response) and ~y1:n ¼ f~yt ; t ¼ 1; . . . ;ng for the measurements
(observed response).

The predictions of the model, y1:n (indicated with the gray line)
are behaviorally consistent with the observations, ~y1:n (dotted line),
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but demonstrate a significant bias towards lower streamflow val-
ues. A better compliance between model and data can be achieved
by tuning the model parameters. If we write the dynamic nonlinear
watershed model in a state-space formulation, the model calibra-
tion problem considered herein (Fig. 1) can be expressed as
follows:

xtþ1 ¼ f ðxt; h;utÞ þxt ; ð1Þ

where f(�) is the (nonlinear) model operator expressing the wa-
tershed transition in response to forcing data ut (rainfall, and poten-
tial evapotranspiration), model parameters, h and state variables, xt.
The variable xt represents errors in the model formulation, but is
completely neglected in classical model calibration studies. In the
remainder of this paper, we assume that the parameter space is
bounded, h 2 H 2 Rd and that the state space, X is of dimension
xt 2 X 2 Rk. Examples of system states within the context of wa-
tershed modeling include but are not limited to (spatially distrib-
uted) measurements of soil moisture content, pressure head, and
groundwater table depth.

The measurement operator, �h(�), defines the observation pro-
cess and projects the model states, xt+1 to the model output, ~ytþ1

(observed response):

~ytþ1 ¼ �hðxtþ1;/Þ þ mtþ1; ð2Þ

where mt+1 denotes the measurement error and / stores any addi-
tional measurement parameters. This equation is quite popular
and used in many textbooks and publications, but assumes that
the system state at t + 1 contains all necessary information to accu-
rately predict the quantity of interest, yt+1. On the contrary, if the
calibration data consists of some time-averaged variable, then
knowledge of the system (watershed) prior to t + 1 is required,
and thus an alternative formulation of Eq. (2) is warranted.

To establish whether f(�) provides an accurate description of the
underlying system it is intended to represent, it is common prac-
tice to compare the simulated system behavior y1:n(h) with respec-
tive observations ~y1:n. The difference between both is encapsulated
in a residual vector E1:n(h):

E1:nðhÞ ¼ G ~y1:n½ � � G y1:nðhÞ½ � ¼ e1ðhÞ; . . . ; enðhÞf g; ð3Þ

where G[ � ] allows for linear and nonlinear transformations of the
model predictions and observational data. Examples include square
root, Box-Cox [11], and normal quantile transformations [87,61],
and the use of flow duration curves [116,10], spectral analysis

[82,89] and wavelet spectral analysis [113,98,26]. Unfortunately,
it is not particularly easy to work with the n-dimensional vector
of error residuals, E1:n directly and find the preferred parameter val-
ues. Instead, it is much easier to summarize the vector of residuals
into a single measure of length, F, also called objective function. The
goal of model calibration then simply becomes finding those values
of h that minimizes (maximizes, if appropriate) this criterion.

During the past 4 decades much progress has been made in the
fitting of hydrologic models to data. That research has primarily fo-
cused on six different issues: (1) the development of specialized
objective functions that appropriately represent and summarize
the residual errors between model predictions and observations
[53,106,66,5,57,99], (2) the search for efficient optimization algo-
rithms that can reliably solve the watershed model calibration
problem [133,31,12,75,136,102,119,77,62,123,112,125,88,130],
(3) the determination of the appropriate quantity and most infor-
mative kind of data [67,107,44,135,124], (4) the selection and
development of efficient and accurate numerical solvers for the
partially structured differential and algebraic equation systems of
hydrologic models [56,59,60,100], (5) the representation of uncer-
tainty [7,9,65,94,111,134,34,45,69,117,118,132,16,35,80,85,86,8,
51,57,58,64,76,103,122,1,36,37,126,127,20,81,109,97,105,128,129-
,63,93,24], and (6) the development of inference techniques for
refining the structural equations of hydrologic models [138,121,
14,139].

Despite the progress made, increasing concern is surfacing in
the hydrologic literature that the ‘‘classical’’ approach to model cal-
ibration introduced by Carl Friedrich Gauss (1794) has some serious
deficiencies that necessitate the development of a more powerful
paradigm. One of these deficiencies is that model structural and
forcing (input) data errors are assumed to be either ‘‘negligibly
small’’ or to be somehow ‘‘absorbed’’ into the error residuals,
E1:n(h). The residuals are then expected to behave statistically sim-
ilar as the calibration data measurement error. Yet, many contribu-
tions to the hydrologic literature have demonstrated that this
assumption is unrealistic. This is evidenced by error residuals that
typically exhibit considerable variation in bias, variance, and corre-
lation structures at different parts of the model response. Another
deficiency is that the use of a single performance metric, F, no mat-
ter how carefully chosen, is inadequate to extract all information
from the available calibration data. The use of such ‘‘insufficient
statistic’’ promotes equifinality, and makes it unnecessarily diffi-
cult to find the preferred parameter values.

Fig. 1. Schematic overview of the model calibration problem: the model parameters are iteratively adjusted so that the predictions of the model, f, (represented with the solid
line) approximate as closely and consistently as possible the observed response (indicated with the dotted line).
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