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a b s t r a c t

Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as
mathematical operators defined by natural phenomena. This follows the view that the diffusion equation
is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional
derivatives come from the governing equations of stable Lévy motion, and that fractional integration is
the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived
in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these
general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differ-
ential equations, and Eulerian methods for stochastic integrals. These numerical approximations illumi-
nate the essential nature of the fractional calculus.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The term ‘‘fractional calculus’’ refers to the generalization of
integer-order derivatives and integrals to rational order. This topic
was first broached by L’Hopital and Leibniz after the latter’s co-
invention of calculus in the 1700s (see the excellent history by Old-
ham and Spanier [1]). In fact, the operators can be extended to
complex as well as real order, so the ‘‘fractional’’ label is a minor
historical misnomer.

Fractional calculus was primarily a mathematical curiosity for
centuries (see examples in [1,2]). For example, when Heaviside
would take the ‘‘square root’’ of both sides of a diffusion equation,
he was generating a 1/2-order time derivative. Some of the first
physical applications were by geophysicists describing material
somewhere between elastic (Hooke’s linear relationship between
stress and strain) and viscous (described by Newton’s stress pro-
portional to strain rate). In his work on this area starting in the
1960s, geophysicist Michele Caputo derived the fractional deriva-
tive that carries his name. Benoit Mandelbrot’s work on fractional
Brownian motion and geophysical time series starting in the 1960s
implicitly used fractional-order integration.

In the 1990s, a resurgence of interest surrounded the applica-
tion of fractional derivatives in the model equations of anomalous
diffusion (see [3] for an extensive review). At the same time, an
understanding of the importance of general non-locality in
upscaled transport in heterogeneous aquifer material emerged
[4,5]. The non-locality is defined by operators that account for

(integrate) the concentrations at previous times and/or large re-
gions of space. These studies were based on the simple idea that
the concentration change at some collection point (a plane or well)
depended on contributions from potentially large distances up-
stream and/or the concentration loading history for some time in
the past. Formally, the non-locality arises when the underlying
velocity field is uncertain and correlation scales are significantly
large compared to the scale of observation [6]. Upscaled descrip-
tions of transport lose detailed velocity information that is trans-
ferred to the non-local operators.

One attempt to incorporate spatial non-locality in a tractable
form assumed a set of weights that decayed as a power-law
[7–9], which forms the definition of a fractional-order dispersion
term. This formulation assumed that the concentration change at
some point depended on upstream concentrations, and the depen-
dence decayed like a power law of the distance. Temporal non-
locality, in which concentration change at a point depends on the
prior concentration ‘‘loading’’ is the basis for hydrologic applica-
tions of continuous time random walks (CTRW). The CTRW were
shown to define temporal fractional derivatives when the weight-
ing of prior concentration decayed like a power-law (see the exten-
sive review by Metzler and Klafter [3]). A few years later, the
formal link between two-state (mobile/immobile) multi-rate mass
transfer equations [10,11] and temporally fractional-order models
was made [12,13]. This accounts for solute loading into relatively
impermeable material that slowly releases the solute after the bulk
of a plume has passed.

Forays into fractional calculus in multiple dimensions showed
that the fractional derivatives could be extended in ways
significantly different than classical cases. The derivative operators
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were defined by the underlying diffusion process of Lévy motion,
which could have different scaling rates and skewness in different
directions. The derivative operators inherit the different orders and
descriptions of skewness in all directions. Because of the link be-
tween derivatives and integrals, these extensions can be trans-
ferred to any system that uses fractional integrals. The most
common hydrologic application of fractional integration is the gen-
eration of fractional Brownian motion as a representation of aqui-
fer material with long-range correlation structure. Using the
inverses of the newly defined fractional derivatives gave new tools
to extend the classical fractional Brownian motion to more closely
represent anisotropic aquifer structure [14].

Because the fractional derivative and integrals are defined as
convolution operators, they are easy to implement using standard
numerical techniques. In addition, because the fractional diffusion
equations that generate the derivative operators are based on the
motion of a single particle, the classical random walk particle
tracking (RWPT) techniques are well-suited to solve the fractional
advection–dispersion transport equations. We exploit the numeri-
cal implementations as a vehicle to define and solve to fractional-
order differential and integral equations.

The paper is organized in three main sections dealing with frac-
tional space derivatives (Section 2), fractional time derivatives
(Section 3), and fractional integrals (Section 5). Within the two
derivative sections, we outline how the diffusion equation, and
its fractional-order counterparts, are defined by the stochastic pro-
cesses that they describe. We show how the equations naturally in-
duce both their Eulerian (Section 2.5) and Lagrangian (Section 2.6)
numerical approximations. In Section 4 we briefly summarize how
the fractional transport equations have been applied to contami-
nant transport problems in surface and subsurface hydrology. We
then show in Section 5 how the inverse of the fractional derivative
operators define the fractional integrals in multiple dimensions,
and how these integrals can be used to generate conditioned, mul-
ti-scaling, random aquifer facsimiles. We close with conclusions
and recommendations for future work in Section 6.

2. Markovian diffusions and fractional space derivatives

There are several forms of fractional derivatives that are distin-
guished by the domain over which they operate. Because they are
non-local operators, they ‘‘look’’ for values from a certain distance
ahead or behind for information. For spatial processes it may be
correct to look ahead and/or behind (or at any angle) over all space.
Temporal information is only used after some starting time, so the
domain of interest is positive time only. We use these distinctions
to explain the association of the different operators to different
behaviors in diffusions based on random walks.

The starting point for all of the generalizations is classical
Brownian motion. It is well known that Brownian motion B(t) is
the limit Markov (memoryless) process of finite-variance random
walks with short-range correlation [15,16]. This makes Brownian
motion an attractive model for transport of passive tracers in sur-
face and ground water: the exact nature of the individual motions
is not particularly important in the long-term. The central limit
theorem dictates that all finite-variance motions converge toward
the Gaussian limit distribution. It is precisely this property that has
made Brownian motion an attractive and useful model of macrodi-
spersion in aquifers. Even with non-Gaussian particle motions, the
long term transport tends toward the Gaussian limit distribution
(for perhaps the earliest experimental example see Taylor [17]).

If B(t) denotes the location of a particle in one-dimensional
space x at time t then the density of the location p(x, t) is given by

pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p exp

�x2

4Dt

� �
; ð1Þ

where D is half the variance of each motion size divided by the
mean motion time. Throughout this paper, we will use Fourier
f ðkÞ �

R
e�ikxf ðxÞdx and Laplace f ðsÞ �

R
e�stf ðtÞ transforms, where

it is understood for notational simplicity that f(x),f(k) and f(t),f(s)
are transform pairs, not the same functions.

To connect the diffusion equation with Brownian motion, note
that the Fourier transform (FT) of (1) is p(k, t) = exp (tD(ik)2), with
time derivative

dpðk; tÞ
dt

¼ DðikÞ2 expðtDðikÞ2Þ ¼ DðikÞ2pðk; tÞ: ð2Þ

A property of Fourier transforms of integer-order derivatives is that
(ik)nf(k),dnf(x)/dxn, so that the inverse transform of the previous
equation becomes

@pðx; tÞ
@t

¼ D
@2

@x2 pðk; tÞ: ð3Þ

In a more general way that will be useful shortly, we can write the
FT of the Brownian motion density as p(k, t) = exp (tA(k)), where the
function of the wavenumber A(k) = D(ik)2, then following the same
procedure the ‘‘inverse FT’’ of A(k) defines the linear space operator
in the Cauchy equations

dpðk; tÞ
dt

¼ AðkÞpðk; tÞ ð4Þ

with inverse FT

dpðx; tÞ
dt

¼
Z

AðxÞpðx� n; tÞdn � Axpðx; tÞ; ð5Þ

where the Ax() denotes the linear space operator defined by convo-
lution with A(x), the inverse FT of A(k). Here we use the fact that the
product of two functions A(k)p(k, t) in Fourier space is a convolution
in real space. This convolution, in turn, specifies an operation on the
function p(x, t) in real space. For example (ik)2 ,d2/dx2 represent
the pair A(k),Ax for Brownian motion. This convolution machinery
can be used to explain the diffusion equation for Brownian motion,
because the function (ik)2 is the (distributional) FT of the second
derivative of the Dirac delta function. The Dirac delta function
d(x � a) for some constant shift a is a ‘‘generalized function’’ (also
called a distribution) defined byZ

dðx� aÞf ðxÞdx ¼ f ðaÞ: ð6Þ

Its derivatives are defined via integration by parts:Z
dðnÞðnÞf ðx� nÞdn ¼

Z
dðnÞf ðnÞðx� nÞdn: ð7Þ

Because the values of f(x) for x – a do not affect the integral (6), we
might say that

dðx� aÞ ¼
1 if x ¼ a;

0 otherwise;

�
ð8Þ

where
R

dðxÞdx ¼ 1, so that the infinity at x = a is tamed by integra-
tion. Another intuitive definition of the Dirac function is that it is
the limit of a Gaussian density function with mean a as the variance
tends toward zero, i.e., the Dirac delta is like the probability density
‘‘function’’ of the constant number a.

Taking f(x) = e�ikx in Eq. (6) shows that the FT of d(x � 0) equals 1.
Then the FT of d00(x) is (ik)2 � 1, so that multiplying the FT by (ik)2 is
equivalent to convolution with d00(x). Therefore, Brownian motion,
by virtue of the FT of its density function, defines the diffusion equa-
tion. This is the sole connection between the diffusion equation and
Brownian motion. The notion that a concentration gradient ‘‘drives’’
a diffusion by physical means was dispelled by Einstein [18] and
Crank [19] in their seminal work. The extension of the probability
distribution for a single particle, p(x, t) to concentration for a large
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