Contents lists available at ScienceDirect

Aquatic Toxicology

journal homepage: www.elsevier.com/locate/aquatox

Arginine kinase in the cladoceran *Daphnia magna*: cDNA sequencing and expression is associated with resistance to toxic *Microcystis*

Kai Lyu^a, Lu Zhang^a, Xuexia Zhu^a, Guilian Cui^a, Alan E. Wilson^b, Zhou Yang^{a,*}

^a Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China

^b School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA

ARTICLE INFO

Article history: Received 17 November 2014 Received in revised form 29 December 2014 Accepted 30 December 2014 Available online 2 January 2015

Keywords: Zooplankton Cyanobacterial blooms Energy production Phenotypic plasticity Gene expression Local adaptation

ABSTRACT

Nutrient loading derived from anthropogenic activities into lakes have increased the frequency, severity and duration of toxic cyanobacterial blooms around the world. Although herbivorous zooplankton are generally considered to be unable to control toxic cyanobacteria, populations of some zooplankton, including Daphnia, have been shown to locally adapt to toxic cyanobacteria and suppress cyanobacterial bloom formation. However, little is known about the physiology of zooplankton behind this phenomenon. One possible explanation is that some zooplankton may induce more tolerance by elevating energy production, thereby adding more energy allocation to detoxification expenditure. It is assumed that arginine kinase (AK) serves as a core in temporal and spatial adenosine triphosphate (ATP) buffering in cells with high fluctuating energy requirements. To test this hypothesis, we studied the energetic response of a single Daphnia magna clone exposed to a toxic strain of Microcystis aeruginosa, PCC7806. Arginine kinase of D. magna (Dm-AK) was successfully cloned. An ATP-gua PtransN domain which was described as a guanidine substrate specificity domain and an ATP-gua Ptrans domain which was responsible for binding ATP were both identified in the Dm-AK. Phylogenetic analysis of AKs in a range of arthropod taxa suggested that Dm-AK was as dissimilar to other crustaceans as it was to insects. Dm-AK transcript level and ATP content in the presence of M. aeruginosa were significantly lower than those in the control diet containing only the nutritious chlorophyte, Scenedesmus obliquus, whereas the two parameters in the neonates whose mothers had been previously exposed to *M. aeruginosa* were significantly higher than those of mothers fed with pure S. obliquus. These findings suggest that Dm-AK might play an essential role in the coupling of energy production and utilization and the tolerance of D. magna to toxic cyanobacteria.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Concomitant with the eutrophication of lakes, nuisance cyanobacterial blooms have become increasingly frequent and widespread for several decades (Chislock et al., 2013a; Merel et al., 2013). In addition to worsening the quality of water resources for human use, high cyanobacterial abundances may also have considerable negative impacts on herbivorous zooplankton, including the important generalist zooplankton genus, *Daphnia* (Reynolds, 1994; Wilson et al., 2006; Yang et al., 2011, 2012).

Cyanobacteria have several characteristics that make them insufficient as a food source for zooplankton. For example, grazing-resistant forms, such as large filaments and colonies, may mechanically interfere with feeding (De Bernardi et al., 1990; Yang

http://dx.doi.org/10.1016/j.aquatox.2014.12.023 0166-445X/© 2014 Elsevier B.V. All rights reserved. et al., 2006), while the low content of essential fatty acids in cyanobacteria can suppress growth rates of zooplankton (Von Elert and Wolffrom, 2001). Moreover, some cyanobacterial genera can produce toxins (e.g. microcystins; MCs) (Catherine et al., 2013) that can inhibit zooplankton by reducing filtering rates or causing rapid death (DeMott et al., 1991; Lürling and Beekman, 2006; Xiang et al., 2010). Despite disagreement on the causal factors, cyanobacteria in the diet typically reduced zooplankton growth and reproduction (Lürling, 2003; Martin-Creuzburg et al., 2005; Wilson et al., 2006; Lyu et al., 2013a,b,c; Hochmuth and De Schamphelaere, 2014), which can lead to zooplankton population declines that can reduce energy transfer efficiency in aquatic food-webs (Miner et al., 2012; Ger et al., 2014).

To withstand toxic cyanobacteria, some *Daphnia* species have been shown to adapt to toxic cyanobacteria (Gustafsson et al., 2005; Guo and Xie, 2006; Wilson and Hay, 2007; Chislock et al., 2013b; Jiang et al., 2013). For example, Hairston et al. (1999) first showed the evolution of resistance in *Daphnia galeata* to

^{*} Corresponding author. Tel.: +86 25 85891671. *E-mail address:* yangzhou@njnu.edu.cn (Z. Yang).

1	ACT	CTG	TGI	CGG	TGA	TCA	CTA	CTG	TTC	GCT	CCG	CAG	ATT	CCT	TTT	45
46	CGT	GTT	CTT	CCT	TGC	ATC	AAA	ATG	GTT	GAC	GCC	GCC	GTT	GCC	GAG	90
								м	V	D	A	A	V	A	E	8
91	AAA	TTG	GAA	GCT	GGA	TTC	CAG	AAG	CTC	CAG	GAA	GCC	ACC	AAC	TGC	135
9	K	L	Е	A	G	F	Q	K	L	Q	E	A	т	Ν	С	23
136	AAG	TCT	CTG	TTG	AAG	AAG	CAC	CTC	ACT	CGC	GAG	ATC	TTC	GAC	AAG	180
24	K	S	L	L	K	K	Н	L	Т	R	E	I	F	D	K	38
181	ATC	AAG	GAT	CTC	AAG	ACC	TCC	TTC	GGA	TCC	ACC	CTT	CTC	GAT	GTC	225
39	I	K	D	L	K	Т	S	F	G	S	т	L	L	D	V	53
226	ATC	CAA	TCT	GGT	GTT	GAG	AAC	TTG	GAC	TCT	GGA	TTC	GGT	GTG	TAC	270
54	I	Q	S	G	V	Е	Ν	L	D	S	G	F	G	V	Y	68
271	GCC	CCC	GAT	GCC	GAA	GCT	TAC	AGC	GTT	TTC	AAC	GAC	CTC	TTC	GAA	315
69	A	Ρ	D	A	Е	A	Y	S	V	F	Ν	D	L	F	Е	83
316	CCC	ATG	ATC	TGC	GAT	TAC	CAC	ACC	GGA	TTC	AAG	CCC	GGA	GAT	GCT	360
84	P	М	I	С	D	Y	Н	Т	G	F	K	Ρ	G	D	A	98
361	CAC	CCA	CCC	AGG	GAC	TTT	GGT	GAT	CTC	GAG	ACT	TTC	GGC	AAC	TTG	405
99	Н	Ρ	Ρ	R	D	F	G	D	L	Ε	т	F	G	Ν	L	113
406	GAC	CCC	GAG	GGC	GCC	TTC	ATC	GTC	TCC	ACC	CGC	GTC	CGT	TGC	GGC	450
114	D	P	Е	G	A	F	I	V	S	Т	R	V	R	С	G	128
451	CGA	TCC	TTG	GCC	GGC	TAT	GCC	TTC	AAC	CCT	TGC	TTG	ACT	GAG	GCC	495
129	R	S	L	A	G	Y	A	F	Ν	P	С	L	Т	E	A	143
496	AAC	TAC	AAG	GAG	ATG	GAA	GAG	AAA	GTC	GTC	GCC	AGC	TTG	TCC	TCC	540
144	N	Y	К	Ε	М	Ε	Ε	K	V	V	A	S	L	S	S	158
541	TTG	GAA	GGC	GAA	CTC	AAG	GGA	ACT	TAC	TAC	CCA	TTG	ACT	GGC	ATG	585
159	L	E	G	Ε	L	K	G	Т	Y	Y	Ρ	L	Т	G	М	173
586	ACC	AAG	GAA	GTC	CAG	ACC	CAG	CTC	ATC	CAG	GAT	CGT	TTC	CTC	TTC	630
174	Т	K	Е	V	Q	Т	Q	L	I	Q	D	R	F	L	F	188
631	AAG	GAG	GGA	GAT	CGC	TTC	CTT	CAG	GCT	GCC	AAC	GCC	TGC	CGC	TAC	675
189	K	E	G	D	R	F	L	Q	A	A	N	A	С	R	Y	203
676	TGG	CCC	ACC	GGA	CGT	GGC	ATC	TAC	CAC	AAC	GAC	GCC	AAG	ACC	TTC	720
204	W	P	T	G	R	G	I	Y	H	N	D	A	K	Т	F	218
721	TTG	GTT	TGG	TGC	AAC	GAG	GAA	GAT	CAC	TTG	CGC	ATC	ATC	TCC	ATG	765
219	L	V	W	C	N	E	E	D	H	L	R	1	I	S	M	233
766	CAG	AAA	GGT	GGT	GAC	TTG	AAG	GCC	GTC	TAT	GCC	CGT	T	GTT	AAC	810
234	Q	K Amc	G	G	D	L	K	A	V	I	A	K	L	CAC	N CAT	248
240	GCC	ATC	AAC	GAA	ATC	GAG	AAG	AGG	ATT	CCC	TTC	TCT	CAC	CAC	GAT	855
249	A	T	IN CCM	E	T	E ACC	T T	R	1	P	r DDC	D D D D D D D D D D D D D D D D D D D	n	Л	D ACC	203
264	MAA	V	GGI	F	TIG	MCC	F	IGC	CCA	ACC	MAC	TIG	GGC	ACC	MCC m	279
204	ATC	I CCC	GCT	TCC	CTC L	CAC	r ATT	CCC	CTTC	1	מממ	TTC	CCT	CCT	CAT	2/0
279	T	D	D I	c c	UIC N	L	T	7	T	D	NAA	T	DC1	- J	D	203
946	CTT	GCC	A	CTC	GAA	GAG	GCC	222	GGA	AAG	TTC	DAC	CTC	CAG	GTC	990
294	T.	D GCC	K	L.	F	F	D D D	۵00 ۵	G	K	F	N	T.	O	V	308
991	CGT	GGA	ACT	GCT	GGT	GAA	CAC	ACC	GAA	GCC	GAA	GGT	GGT	GTG	TAC	1035
309	R	G	T	A	G	E	Н	T	E	A	E	G	G	V	Y	323
1036	GAC	ATC	TCC	AAC	AAA	CGC	CGC	ATG	GGT	CTG	ACT	GAA	TAC	CAG	GCC	1080
324	D	I	s	Ν	K	R	R	М	G	L	т	E	Y	Q	A	338
1081	GTC	AAG	GAG	ATG	TAC	GAT	GGT	CTC	CAG	GAG	CTC	ATC	CGC	ATG	GAG	1125
339	V	K	Е	М	Y	D	G	L	Q	E	L	I	R	М	Е	353
1126	AAA	GAG	GCT	GCT	TAA	ATC	TCT	TCC	TTT	CTC	TCT	GTC	TCT	CCC	ACA	1170
354	K	Е	A	A	*											
1171	GCC	CTT	CTT	AAT	AAT	AAT	AAT	ATA	TTA	TTA	CAC	CAT	TAG	CCA	TGT	1215
1216	GTT	AAG	ATC	TGC	TTA	AAA	AGC	GTA	TTT	GAA	CTG	ATT	ATT	GTA	GAT	1260
1261	GTA	TTG	GGC	CTA	ATT	TGC	GAC	ATC	CAT	TGG	AAC	CGT	TTT	CTT	TCT	1305
1306	CCT	TCT	TCT	TCT	CTA	TTA	AAG	TTG	TTG	TTG	TTG	TTG	TTG	TAC	AAC	1350
1351	GGT	GTG	AGA	TAC	GGT	TTT	AAC	ACA	CCG	CCA	CGT	CAT	CGA	GTT	TTG	1395
1396	AAA	GTC	CTT	TGT	ATC	CGA	AGA	ATT	CTT	CTG	TGT	CCA	TTG	TGT	GTA	1440
1441	CAT	CCA	CGA	CGG	AAC	GGG	TTG	GAA	GGC	TCT	GCA	GGA	TCC	ACT	GCT	1485
1531	CGA	GAT	I'I'G	CAC	TAT	ATA	GTC	GAA	ATA CAT	GCG	TOT	GAT	TCT	ACT	ACA	1530
1576	GTC	CGT	TAT	TAA	TGC	CAC	ATA	TCC	GAT AAT	TTC	GAN	GAC	AAT	GAC	ACT	1620
1621	GCA	AAG	AGA	TGT	Ада	ACA	TGG	AGA	AAG	CCC	ACG	TAT	ATC	AGT	GAT	1665
1666	TTG	TTC	AAA	ААА	ACC	GCA	ААА	ААА	ААА	AAG	AAT	ACA	CAG	AAA	CCA	1710
	TCC	CTA	AAA	AAA	AAA	ААА	ААА	AAA	ААА	ААА	AAA					1743
1/11	TCC-															

Fig. 1. Nucleotide and deduced amino acid sequences of *D. magna* arginine kinase (Dm-AK). The nucleotide sequence is numbered from 5' end, and the single letter amino acid code is shown below the corresponding codon. The start codon (ATG) and the end codon (TAA) highlighted in fluorescent green color. Potential ATP: guanido phosphotransferases active site highlighted in pink color. Four protein kinase C phosphorylation sites are highlighted in yellow color. One N-myristoylation site is

Fig. 2. The architecture of deduced Dm-AK amino acid (356 amino acids). An ATPgua PtransN and an ATP-gua Ptrans domain were at the position 18–93 and 114–356, respectively. Protein domains were predicted by SMART program.

cyanobacteria by contrasting the performance of Daphnia clones hatched from contrasting periods in the eutrophication history of Lake Constance to diets lacking or containing toxic Microcystis aeruginosa. Since then, related studies have shown that adaptations in Daphnia to toxic cyanobacteria occur across lakes that vary in productivity and abundance of cyanobacteria (Sarnelle and Wilson, 2005) and that the effects of *Daphnia* resistance on algal abundance can be as important as the presence or absence of Daphnia (Sarnelle and Wilson, 2005; Chislock et al., 2013b). Even short-term exposure to M. aeruginosa can quickly induce resistance to cyanobacteria in Daphnia (Gustafsson and Hansson, 2004) or cause feeding selectivity to reduce the ingestion of cyanobacteria (Tillmanns et al., 2011). One possible explanation for these observations is that tolerant zooplankton may elevate energy production, thereby adding more energy allocation to detoxification expenditure (Bossuyt and Janssen, 2004; Ortiz-Rodríguez and Wiegand, 2010; Bergman Filho et al., 2011). Recent results on the gene expression of key enzymes of carbohydrate and protein metabolism showed disruptions on the energy producing pathways of *D. magna* exposed to *M. aeruginosa*. These findings suggest that important functions of energy status to maintain metabolic homeostasis may compete with energy deficiency and toxicity due to feeding on cyanobacteria (Schwarzenberger et al., 2009; Asselman et al., 2012).

In invertebrates, arginine kinase (ATP: arginine Nphosphotransferase, EC 2.7.3.3; AK) which is analogous to the creatine kinase (CK) reaction in vertebrates, serves as a core in temporal and spatial ATP buffering in cells with high, fluctuating energy requirements (muscle, nerves, etc.) (Uda et al., 2006). AK catalyzes the reversible substrate-level phosphorylation of arginine by MgATP to form phosphoarginine and MgADP, thereby regenerating ATP during bursts of cellular activity (Zhou et al., 1998; Alonso et al., 2001). A growing literature has revealed an evolutionary relationship between invertebrate AK and vertebrate CK and their analogous metabolic roles (Bogdan, 2001). AK has been found to synthesize phosphagen in one direction when ATP supply is abundant, and in the opposite direction to mediate the rapid breakdown of phosphagen during acute stress response. In recent studies, it was elucidated that the expression of AK correlated closely with salinity change in blue crab, Callinectes sapidus (Kinsey and Lee, 2003), acclimation to cadmium in crab, Eriocheir sinensis (Silvestre et al., 2006), the exposure to lead in yabby, Cherax destructor (Morris et al., 2005), and hypoxic stress in the kuruma prawn Marsupenaeus japonicas (Abe et al., 2007). Therefore, AK is believed to play a crucial role in environmental stress responses in terms of regulating energy production and utilization in crustaceans.

However, little is known about AK characterization and functions of *Daphnia* which have been shown to locally adapt to

highlighted in gray color. Six casein kinase II phosphorylation sites are highlighted in turquoise color. The termination code is marked with an asterisk. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/6382232

Download Persian Version:

https://daneshyari.com/article/6382232

Daneshyari.com